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FOREWORD

The report on the introduction to non-linear mechanics as a whole
falls into four major divisions.

Part I, published as David Taylor Model Basin Report 534 under date
of December 1944, is concerned with the topological methods; its presentation
substantially follows the "Theory of Oscillations" by Andronow and Chaikin.
The material 1s slightly rearranged, the text is condensed, and a number of
figures in this report were taken from the book. Chapter V, concerning
Liénard's analysis, was added since it constitutes an important generaliza-
tion and establishes a connection between the topological and the analytical
methods, which otherwise might appear as somewhat unrelated.

Part II, published as David Taylor Model Basin Report 546 under date
of September 1945, gives an outline of the three principal analytical methods,
those of Poincaré, Van der Pol, and Kryloff-Bogoliuboff.

Part III, published here, deals with the complicated phenomena of
non-linear resonance with its numerous ramifications such as internal and
external subharmonic resonance, entrainment of frequency, parametric excita-
tion, and the 1like.

Finally, Part IV will review the interesting developments of Mandel~
stam, Chaikin, and Lochakow in the theory of relaxation oscillations for large
values of the parameter u. This theory is based on the existence of quasi-
discontinuous solutions of differential equations at the point of their "de-
generation," that is, when one of the coefficients approaches zero so that the
differential equation "degenerates" into one of lower order. A considerable
number pf experimental facts will be explained on the basis of this theoreti-

cal idealization.
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INTRODUCTION TO NON-LINEAR MECHANICS

PART III

NON-LINEAR RESONANCE

79. INTRODUCTORY REMARKS
The object of Part III is to outline the present status of the the-

ory of non-linear resonance. The phenomena of non-linear resonance are far
more complicated and diversified than those of ordinary linear resonance, and
it does not seem possible as yet to give a unified picture of the whole sub-
Ject. Some of these phenomena appear to be more adequately discussed on the
basis of the quasi-linear theory of Kryloff and Bogoliuboff, while others, on
the contrary, fit better into the theory developed by Mandelstam and Papalexi,
which 1s based on the earlier work of Poincaré.

For these reasons it was thought preferable to present separately
the expositions of these two principal schools of thought without attempting
to establish further generalizations at this time. It is apparent that this
procedure inevitably reflects the somewhat unsettled state of the whole sub-
ject and leads to a certain overlapping of topics. The reader will undoubtedly
observe this in connection with certain specific topics such as parametric
excitation, entrainment of frequency, and others.

The first four chapters of Part III are devoted to an exposition of
the theory of Kryloff and Bogoliuboff; the last three give an outline of the
work done by the school of Mandelstam and Papalexi.

In addition to the intrinsic difference in the methods used by vari-
ous writers, there also exists a considerable difference 1n the terminology
they employ. An attempt was made to remedy this situation to some extent by
designating as internal resomance the case when the divisors in the general-
ized response function become small. The term external resomance 1s reserved
exclusively for the case when an external periodic excitation exists, as in
the theory of ordinary linear resonance.

In the quasi-linear theory of Kryloff and Bogoliuboff the study is
more or less equally divided between these two principal cases, whereas the
work of the school of Mandelstam and Papalexi centers mainly about the phenom-
ena of external resonance, which are 1llustrated by numerous experimental
researches.

The reader will find it convenient to read Chapters X and XII or
Part II before reading Chapters XIII, XIV, XV, and XVI of Part III. It is
also suggested that he read Chapters I, III, and IV of Part I,and particularly



Chapter VIII of Part II, before reading Chapters XVII and XVIII, which are in-
dependent of the first four chapters of Part III.

Chapter XIX depends very little on any of the preceding chapters,
except possibly on the concept of representing solutions of differential equa-
tions by phase trajectories which 1s outlined in Section 3, Part I. The ess-
ence of Chapter XIX lies in the theory of differential equations with periodic
coefficients, outlined only briefly in Section 108.

It must be admitted that these attempts to establish junction points
between the exceedingly complicated phenomena of non-linear resonance and var-
ious existing theories are probably incomplete at present, and it is hoped
that this survey will serve as a stimulus for further generalizations.



CHAPTER XIlI

SYSTEMS WITH SEVERAL DEGREES OF FREEDOM*

We now propose to study the behavior of quasi-linear systems with
several degrees of freedom. For this purpose it 1s useful to review the so-
called method of complex amplitudes used extensively in the theory of electric
circuits. From this method the definitions of impedances and admittances of
electric circuits can be generalized so that they also apply to mechanical
systems. The further generalizatlon necessary to pass from linear problems
to quasi-linear ones is then relatively simple.

80. METHOD OF COMPLEX AMPLITUDES

In dealing with oscillatory phenomena, it is advantageous to use the
exponential function e’“*= cos wt + j sin wt, where j = y-1. A few well-known
propositions, which will be useful later, are glven below.

1. Multiplication by j of a sinusoidal function f(¢) = '’ advances its
.1_|’ .
phase by m/2. This follows from Euler's identity j = e’Z2; whence jel“ =

. T .
g/l + 8) Likewise, multiplication by -7 retards the phase of e’“’ by =/2.

2. Multiplicatlon of e’ by j", where n is an integer, advances or re-
tards the phase of the vector e¢’“! by nm/2, according to whether » is a posi-
tive or a negative integer. This follows from the definition i"=3-j--7
(n factors); each multiplication by ; advances the rotation by m/2.

3. The derivative df/dt = jwf. Hence the derivative of a sinusoldal
vector f = ae’“! consists in the operation (jw) on the vector qejwﬁ which mul-
tiplies ‘the amplitude ¢ by w and advances the phase by n/2. Likewise,
d™f/dt" = (jw)"f is the operation which multiplies the amplitude by w" and

advances the phase by nm/2.
Symbolically, 6™ = d*/dt" = (jw)" = j"w". This holds only when a is

a constant.

4. For a linear system of sinusoidal functions f, for example, f = f; +
f,, the operation (jw) is additive, that is, (jw)f = (jw)f, + (jw)f,.

5. If, instead of (jw) or (jw)", one has a linear function #(7), for

example, #(;j) = A + Bj, the operation (#(7)1f = Af+ jBf. In this case the
operation ¢(;j) produces two effects:

% The subject matter of this and of the following three chapters is taken from the treatise of Kryloff
and Bogoliuboff, Reference (1).%*

#* Numbers in parentheses indicate references on page 130 of this report.



a. Multiplication of the amplitude vector f by A without
changing its phase.

b. Multiplication of the amplitude by B with the incident
rotation of the phase by m/2. The amplitude I of the new vector
[6(7)]f 1s thus complex, if the original amplitude a of the vector
f is real.

6. More generally, if one has a relation between sinusoidal functions
of the form

B0(5) fo(t) + (DA + - - - + () f() =0 (80.1]
there also exists an analogous relation
Ny + ¢ (DI + -+ - + (I =0 [80.2]
between thelr complex amplitudes I,, I,,-- -, I,.

81. ELEMENTS OF THE THEORY OF LINEAR CIRCUITS
In the theory of linear electric circuits one encounters differen-

tial equations of the form

Zakd Zﬂkd

where I and E are the current and voltage in a given mesh, and o, and B, are
canstant parameters. This equation, written in terms of complex amplitudes,
is

2o, = 3 Bjw)*E
k=0 k=0

From this we obtain

Zak(] w)*

E = = Z(jw)I [81.1]

‘Zrﬂk(yw)k

k=0
and

Zﬂk(jw)

I = = Y(jwE [81.2]

‘Zjadjw)



where

Zak(f‘*’)k

Z(jw) = 50— [81.3]
Zﬂk(jw)k
k=0

is the complex impedance and

Zﬂk(jw)k
k=0
2 e jw)"
k=0

is the complex admittance of the mesh. From these equations it follows that

Y(jw) =

Z(jw) = [81.4]

_1
Y(jw)

Problems involving systems with one degree of freedom are thus re-
duced to the ultimate calculation of impedances or admittances, as the case
may be.

For electric clrcults this procedure is too well known to need em-
phasis here; consequently a few words about it will suffice. For an induct-
ance L and a capaclity C the values of the complex impedances are respectively
jLwand 1/jCw; the resistance is a real quantity R. For a seriles circuit,
the impedance equation 1is used; for a parallel one, the admittance equation.
Thus, when L,, R,, and C, are in seriles,

2, =R, +j(Lw - 511—5)

For another series circuit (L,,R,, C,) one has

Z, = R, + j(Lw - —Cﬁ)

If these two circults are in parallel, the admittance 1is

Z, + 2,

1

1
Zl
and so on.

For systems with several degrees of freedom, there arises the ques-

tion of coupling between these degrees of freedom. The coupling factor can be

determined by analogy with electric-circult theory.
Consider, for instance, a system with two degrees of freedom. - The

first circuit contains L,, R,, and an external "foreing" function. The forcing



12 g function 1s a sinusoldal electromotive force
E = E,e’“’, The second circuit contains L,,
R,, and C,. In addition, the.two circuits
“ ' are coupled together; M 1s the coefficient

T Ce o 7 of mutual inductance. Kirchhoff's law ap-
Le b plied to the first circult gives
Ll%'t—l + Rji, — M% = E,¢’"" [81.5)
Figure 81.1 .
For the second circuit it gives
di, 1. di,
det +R212+C zzdt+Mdt =0 [81.6]

Written in terms of the complex amplitudes, these equations are

\ (lew + Rl)Il b jMwIZ = EO

iMol, + (jL,w + R, + ﬁ)lz =0
whence '
Ry + j(Lyw — 2
I, = E, . T [81.7]
(R, + lew)[Rz + (Lo — E)] + j:MP0?

The cofactor of E, in this expression 1s the admittance Y}(jw).of
the first circuit. If there 1s no coupling, that is, if M= 0, Equation
[81.7] gives

Il = _____lzg____
R, + jLiw
As another application of the theory of linear circults, consider
two simple circuits (L,,C,) and (L,,C,) coupled inductively as shown in Figure
81.1. The complex equations are¥*

' . 1 . L
(Lljw + Cljw)ll - Mjwi, = 0
[81.8]

- Mjwi, + (Lyjw + afj_w)iz =0

The condition which expresses the consistency of the system [81.8] for values
t, and 7, other than the trivilal ones, 7, = 7, = 0, 1s

* We follow the notation of Kryloff and Bogoliuboff in choosing the positive directions as shown in
Figure 81.1.



. _ . 1 . 1 2 2 _
Ajw) = (Llyw + ———Cljw)(szw + _—Czjw) + Mw* =0 (81.9]
that 1s,
(L,Cyw? = 1(L,Cy0* — 1) — M*C,Cy0* =0 [81.10]
Let
Jio L. oot e _ M*
1T e PTG YT I,
This glves
w1l = g% — (0l + 0l + wlw) =0 (81.11]

The oscillating circuits will have frequenciles

2
o = (W + w) + ]/(o.»l2 — w;) + 4g2w12w22 (81.12]
1 = 3 .
2(1 — ¢°)

2 2 P z 2
2_(w12+w2)—}[(w1—w22) + 40wl w? 81.1
o = 2 (81.13)

2(1 — ¢%)

differing somewhat from the natural frequencies w, and w, of each circuit.

82. ANALOGIES BETWEEN ELECTRICAL AND MECHANICAL SYSTEMS

Very often the establishment of a formal analogy between the differ-
ential equations expressing two different types of problehs permits a formal
transfer of known solutions of problems of one type to those of the other. The
method of complex amplitudes developed in connection with electric circuilts
has a useful application in mechanical problems where generalized definitions
of mechanical impedances and admittances are involved. In acoustics the no-
tion of "acoustic impedance" also plays an important role.

The real usefulness of these generalizations occurs in connection
with systems having several degrees of freedom. It 1is preferable, however,
to establish an analogy first for a system having one degree of freedom. '

The differential equation of a simple (L,C,R)-circuit acted upon by
a sinusoidal electromotive force 1s

di . 1 (. _ jwt
Ld—t+Rz+—60f1dt—E0e = E [82.1]

Consider, on the other hand, a mechanical system with one degree of
freedom excited by an external sinusoidal force. Its equation 1s
d’x dx juwt

maTz—+h%-+kx=Foe = F



When the new variable v =-%% is introduced, this equation becomes

t
mZ—’t’+hv+kfvdt=ﬁ;)e"‘"=F | [82.2]
0

One observes that Equations [82.1] and [82.2] are of the same form and that
the following corresponding quantities indicate the analogy between electrical
and mechanical problems:

1

(5,0); (Lym); (B,h); (z.k); (E,F) [82.3)

The method of complex amplitudes in the electrical problem giges

IO = R‘/?-E;‘——O? e—j¢e [82.“-]
1 ' -1 L“’"C_L
where z = Lw - o is the reactance and ¢, = tan -5 The quantity
= e

e
‘/R2 + (Lw - 613)2

is the complex admittance of the circuit. By the analogy [82.3], one obtains

F, ; F,w
v = 0 e = 0
z
‘/h2 + (mw - %) l/h2w2 + (mw® = k)?
-1mw? — k )

= Y,(jw)

-39,

e m [82.5]

where ¢, = tan By further analogy, the quantity

is the complex admittance of the mechanical system. In both cases ¢ = 0 at
resonance, the variables I; and v are in phase with the exciting forces E, and
F, respectively, and their amplitudes are limited by the dissipation factors
R and L. The complex impedances are the inverse quantities of the admittances,
that 1s, Z(jw) =W%w)'

One could proceed to establish an analogy between differential equa-
tions of the second order by differentiating Equation [82.1]. Here one would
compare the differentiated equation [82.1] with that of the mechanical system.
The condition of equivalence for these equations is

G2 (Lom)s (Row); (2,k); (B2, F) [82.6]

It is seen that both the electrical and mechanical problems can be
treated by the concept of admittances and impedances.

These electro-mechanical analogies can easily be established for
systems with several degrees of freedom. Sometimes the establishment of an



L, L, Ls
— JIIOTOI0 ———— TUOTITT0 —
_'n’ l2 _'::
p— C, - C, —_ Cs £ .
tiz- iy Ila'lz (b)
Figure 82.1

analogy with an electrical problem helps considerably in the solution of a
mechanical problem. As an example, consider the mechanical system shown in
Figure 82.1a, whose electrical analogue 1s indicated in Figure 82.1b. Desig-
nating the displacements of the masses m,, m,, and m; by z,, z,, and z; and
the velocities by #, = v,, %, = v,, and &3 = v, respectively, we have, using
the operational notation,

v, = JWk; UV, = JWE,; Uy = Jwa [82.7]
The differential equations of the mechanical system are

k

. k
m jwy, + J—.:—)vl - j—:)('v2 —v) =0

. k k
myjwv, + j—‘i(% - v,) — j—‘i(v3 — v,) =0 [82.8]

. k
myjwvg + ‘7‘%('03 —v,) =F

In these equations, if one takes the velocity v as the dependent

variable, the acceleration is clearly jwv and the displacement is v/jw.
On the other hand, if, in the electric circuit of Figure 82.1b, the

current ¢ 1s the dependent variable, by applying Kirchhoff's law to the subse-
quent meshes of the eircuit one gets
1 . 1

Lljwi1+ m%l - 52]7(1:2 - il) = 0
Ljwi, + =i (i, — i) — (i, — 1,) = 0 (82.9]
2J W1y Cjw 2 1 Cyjw 8 2) = .

A 1 . .
Lyjwi, + 037(13 —i,) =FE
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It is seen that both systems are formally identical. In this par-
ticular case a more complicated investigation of the motion of the mechanical
system shown in Figure 82.1a can be more conveniently conducted by utilizing
the electrical analogy of Figure 82.1b.

In general, any mechanical problem with several degrees of freedom
can be represented by an electrical analogue. Since the terminology 1s more
definitely established for electric circuits than for mechanical systems, it
is always preferable to use the "electrical language."

In more complicated problems it is sometimes difficult to establish
an analogy because the determination of mechanical parameters generally is
more difficult than that of electrical ones. Where it 1s possible to estab-
1lish an analogy, the method of complex amplitudes leads immediately to the
establishment of steady-state conditions.

83. APPLICATION OF THE METHOD OF EQUIVALENT LINEARIZATION
TO THE STEADY STATE OF A QUASI-LINEAR SYSTEM

With this reminder of the principal points of the theory of linear
" eircuits, we can now proceed to establish a generalization of the Kryloff-
Bogoliuboff theory applicable to circuits containing non-linear conductors
of electricity. It will be assumed that the departure from linearity is
small so that the theory of the first approximation describes the phenomena
with sufficient accuracy. In what follows we shall make frequent use of the
Principle of Equivalent Linearization, Chapter XII, so that the definitlons
of impedances and admittances can be extended to quasi-linear systems.

We shall consider first a linear dissipative circuit with constant
parameters R, L, and C, the decrement of which 1s 4 = -R/2L. Let us assume
that we introduce in series with this circuit a non-linear resistor having
the characteristic e = f(7). The variable resistance p of such a non-linear
conductor is defined, as usual, by the relation p = de _ dsz). In accord-
ance with the Principle of Equivalent Linearization, the non-linear conductor
can be replaced by an equivalent linear one whose resistance R, 1s

1 2x )
R, = H—%Jf(zocosqzs)coscp d¢ (83.1]

where i, 1s the quiescent value of ¢ around which the oscillations are to be
investigated. The complex equation of the circult 1s

: 1 _
Ljw + R + Cio + R, =0 [83.2]

Equating to zero the real and imaginary components of this equation, we obtain
two equations:
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Lo - o =0 and R+R =0 (83.3]
w

The first equation [83.3] determines the frequency and the second the ampli-
tude of oscillations in a stationary state. From the second equation it is
noted that oscillations are possible if R, < 0. In the theory of linear cir-
cuits, R, = 0, which requires that R = 0, that is, steady oscillations are
possible only 1if the circuit has no resistance, which is obvious. It is to
be noted that the method of equivalent linearization can only be applied when
the resistance R is small enough to make the decrement 4 = -R/2L small, in
which case the oscillations are feebly damped and the system is quasi-linear
and can be described by equations of the first approximation.

Let us now consider a linear circuit with admittance A(jw), that is,
with impedance Z(jw) =jZTl57’ closed on a non-linear conductor with the equiv-
alent admittance S(a), where a is the amplitude. The circuit will consist,
therefore, of two impedances ZI%ZD and 3%57 in series so that the resultant
impedance will be

1 1
Z (jw) = AGw) + S [83.4]
For steady-state oscillations, Z,(jw) = 0, that is,
AGw) + S(a) =0 (83.5]

Again two equations are obtained by splitting the complex quantities into real
and imaginary components. One of these equations determines the frequency and
the other the amplitude of the stationary oscillatilons.

We shall now apply the method of complex amplitudes to the study of
oscillations in electron-tube circuits. The non-linear conductor, the elec-
tron tube, 1s represented by an equation of the form

i, = f(E)
where ¢, 1s the anode or plate current and E is the control voltage. This
equation can also be written as
i, = S(a)[eg + Dea] = S(a)e [83.6]
where ¢, and e, are the grid and the anode voltages, D = 1/u is the factor of
the anode reaction (here u is the amplification factor of the tube), and S(a)

is the average transconductance,¥* a function of the amplitude a. The quantity
S(a) is given by the equation

2
S(a) = —7rl—aff(E0 + acos¢) cospde [83.7]
0

* The term mutual conductance is also employed.
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ia where E; 1s the quiescent point of
the control voltage.
Let us -consider the cir-

M cuit shown in Figure 83.1 represent-
ing an electron-tube oscillator with
L —C inductive coupling. Designating by
Z,(jw) the impedance of the circuit
R ’ between the points A and B and by

I M(jw) the mutual reactance and using
other notations and positive direc-
tions as indicated in Figure 83.1,
we have

e, = — Z,jw)i,; e, = M(jw)i, [83.8]

a

A

Figure 83.1

From these equations and Equation [83.6] the admittance A(jw) of the circuit
1s given by the expression

1
M(jw) - DZ,(jw)

A(jw) = (83.9]
In a self-excited state the total impedance vanishes, and by Equations [83.4]
and [83.5] one must have

A(jw) — S(a) = 0 [83.10]

In other words, the admittance of the external circuit must be equal to the
admittance, or transconductance, S(a) of the electron tube,

Additional equations from which the conditions of the steady state
can be established are obtained as follows. Let us introduce a complex num-
ber K defined by the relation

_ e _ M@jw :
K = —iza T Z(Gw) (85.11]
From Equations (83.9], [83.10], and [83.11], we obtain
_ 1
K=D+ 5@z.Gw [83.72]

This equation is established by Barkhausen (2) and can be applied to the cir-
cult shown in Figure 83.1. By a simple calculation we find first that

R+ jLw
(1= LCaY) + jCRa (83.13]

Z,(jw) =

The voltage between the polnts A and B is e,, = Z (jw)?, and the current ¢, in
the LR-branch of the circuit is ¢, = e,5/(R + jLw) = ¢, /[(1 - CLw? + jCRw].
Hence the grid voltage e, 1s
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_ Lo Mjw .
e, = Mjwi, = 1 = LCw?) + jCRo i, [83.14]
whence
K = ey Mjw[(l — LCw?) + jCRw] Mjw (83.15]

¢ [l — LCw?) + jCRW(R + jLw) R + jLw
Substituting this value of K into Equation [83.12] and using Equation [83.13],
one finds, after separating the real and the imaginary components, the follow-
ing two equations:

S(M — DL) = CR (83.16]
1 — LCw? + SDR =0 (83.17]

Since both D and R are generally very small, the quantity SDR is of the second
order and can be neglected. One then finds from Equation [83.17] that the
frequency of self-excited oscillations is practically that of the oscillating
circuit, provided the amplification factor u = 1/D is sufficiently large.
Equation [83.16] determines the amplitude a, of the stationary self-excited
oscillation, namely, '

1 F CR
S(a,) = -7—l_a—lof(lv;‘0 + acos¢)cosg dgp = W — DL [83.18]

Let us assume, for example, that the experimental function 7, = f(E% +acos ¢)
is of the form

’
i, = f(E, + acosgp) = i, + k,acos¢ + ky(acos@)® + kylacosp)® + - - -

where ¢, = f(E,) and k,, k,, --- are constants. Substituting this expression
into Equation [83.18], one gets
1 2x 2r
= 2 1 2
S(a) = 7ra[zo(!comﬁqu + kla(!cos odo +
2 2
+ k2a2fcos3¢ d¢ + k3a3fcos‘¢ d¢ + - - ] [83.19]
0 0 ,

The first and the third terms of this equation are zero. If we limit the ex-
pansion to the first four terms, Equation [83.19] gives

’

3 2
Zk3a

whence, by Equation [83.16], the amplitude of the stationary oscillation is

o = ‘/3473(%7- — k) [83.20]

Sla) = k, +




U

It is seen that the quadratic term of the polynomial approximating the exper-
imental non-linear characteristic ¢, = f(E) does not contribute anything to
the expression for the amplitude a of the stationary oscillation. The ampli-
tude 1s expressed only in terms of the coefficients k, and k; of the linear
and cublc terms and the parameters of the circuit, as was found previously by
other methods; see Section 54.

84. APPLICATION OF THE METHOD OF EQUIVALENT LINEARIZATION
TO THE TRANSIENT STATE OF A QUASI-LINEAR SYSTEM

The method of complex amplitudes can also be generalized for the
transient state of a quasi-linear system. For this purpose it is necessary
to extend the definition of symbolic differentiation to the complex exponen-
tial functions e?’, where p = 6 + jw. The quantity ¢ is the decrement if it
is negative and the increment if it 1s positive. The rule of symbolic dif-
ferentiation remains the same as given in Section 80, Proposition 3, namely,

2
g%l:= p-f; -%?é = p* - f;

The vectorial Interpretation of these operations is somewhat different. Thus,
for example, %{ =pf=(6+jw)f=(6f + jwf) means that. the vector %% con-
sists now of two components, one jwf leading the original vector f by m/2 and
the other 4f in phase with f. It follows, therefore, that the vector %% leads
the vector f by an angle ¢ = tan_lf% which is less than n/2 if ¢ > 0, that 1is,
if 4 1s an iIncrement. If, however, § < 0, that is, if 4 is a decrement,
@ = tan™! _r;l which 1s larger than n/2. The generalization for higher deriv-
atives does not present any difficulties. If ¢ » 0, ¢ > n/2; if, however, the
condition of aperiodiec damping is approached, w > 0 and ¢ » 0, which means

that all higher derivative vectors approach the in-phase condition with the
gt

real exponential function f(t) = e
For the transient state we must use the condition

A(p) =0 (84.1]

instead of the condition of consistency [81.9].

Consider, for example, the self-excitation of a simple (L,C,R)-
circuit, as shown in Figure 84.1, closed on a non-linear conductor N which has
the equivalent resistance Reia).* In order to obtain a self-excitation of
this circuit, the total impedance must be zero, that is,

Z(p) + R, =0 [84.2]

where Z(p) 1s the linear impedance, which we wish to consider in connection

* For convenience we will write R, in place of Re(a) in the intermediate calculation.
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with the transient state N
p=—0+ jw
when 6 # 0 but is sméll.*

The linearized impedance of the
steady state 1is

Z,(G) + R, = Ljw + (R + R) + m— =0 —mwmmm—— A A—

Cjw A
Hence, for the transient stape, we have Figure 84.1
to substitute p for jw. This gilves
LCp* + (R+ R)Cp +1 =0 [84.3]

Dividing by LC and putting L_l-C = w,’, We have

R + R
p2 + ————27——£-p + cof =0
whence
R+R ‘/2 R + R,\? . .
=——e+ - (—t = - +
P ek g - () T (84 .4]

where 4 = ligj?‘ is the decrement and w 1s the frequency. Self-excitation
from rest is possible if R + R,(0) < 0, that is, if R < -R,(0). We shall call
R, = -R the critical value of the negdtive resistance and 4, =-%% the linear
decrement. In these notatlons we have

6 = 60[1 - &R(oi)} [84.5]

At the start, that is, when a = O, one must have |R,(0)| > |R,|, that is,
§ < 0, in which case it follows from [84.4] that the amplitudes increase ini-
tially. The function |R,(a)| 1s a monotonically decreasing function of a so
that for a certain value a = a,, R,(a;) = R, and 6 = 0, which means that the
oscillation reaches a stationary state. It is thus seen that the concept of
equivalent resistance R, (a) permits formulating the condition of approach to
the steady state by means of the variable decrement 4. When a » a,, for which
R,(a) > R,, 6 > 0.

As a second example, consider the coupled system shown in Figure
84.2 in which N is a non-linear conductor characterized by the equivalent re-
sistance R,(a) as in the first example. With the same assumptlions and nota-
tions as in the preceding example, the linear impedance of the system is

* In this expression, ¢ is the decrement if it is positive and the increment if it is negative; this
corresponds to the notation of Kryloff and Bogoliuboff.
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. . 1 M*C, 52’
Z(jQ) = L,jQ + R, + C,j% + (1-L,C,R% + jR,C,Q

[84.6]

When the non-linear conductor N is presen{:,

N
— L we have to add R,(a) to R, in the preceding
=, expression and replace jQ by p in order to
) " form the expression for the transient imped-
00000000 AAAAA— ance Z(p) during self-excitation, which we
M now propose to investigate. It is abparent
L2 :L'cg that the quantity Z(p) is generally of the
L form
R, A
Figure 84.2 Zn) = _B—% (84.7]

Since the condition for self-excitation is
Z(p) = 0 and since B(p) # 0, we express this condition as

A(p) = [L,C,p* + (R, + R)C,p + 1][L,C,p° + RyCop + 1] — M?C,C,p* = 0 [84.8]
Let

1 _ w’ 1 _ wl: M _
LICI b L2C2 2 IIIIL2 g
R, + R, R
py= (B +R)Cuw, = _IW5 Py = RyCow, = L2f)2

where p, and p, are small dimensionless factors of the first order. Equation
(84.8] becomes

2 4

2
p » P P e Pt
(;12- 2! w, + 1)((.;; + p2w2 * 1) g wliwf 0 [84.9]

Since p, and p, are small, we can introduce a small parameter u by setting
py = ué, and p, = ué,. We thus obtain the following characteristic equation
for the translent state:

2 2 4
Ap,u) = (B + u€1£ +1)( + /-lle)_ +1) - g?—L2— =0 [84.10]
Wy w, w, w, ww,

This equation can be solved by substituting for p a series expansion
P =1p, + up, + u*p, + --- and developing the function 4(p,u) in a Taylor se-
ries around (p,,0). By equating to zero the coefficients of like powers of u,
one obtain$ a system of equations from which the subsequent terms p,, p,,
can be calculated. These equations are
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A(py,0) = 0
Ap(poro)pl + A‘,(PO,O) =0 [84.11]

Ap(poyo)pz} + App(po,())plz + 2Ap,,(po’0)p1 + A“(po,O) =0

From the first two equations one obtains p, and p,, which give the first ap-
proximation

p = p, + up, [84.12]

Introducing this value of p into Equation [84.10] and making use of Equations
[81.12] and [81.13], one obtains the following equations

1 (p® + Q) (p* + QF)

1 — g A(p,O) = (4)120)22
1 - 2p(2p® + QF + 2))
1 — gz Ap(pvo) - wlngz [8“’.13]

2 2
_. P (P PP
8,(p,0) = &1 (;25 +1) + szwz(;lg +1)
It is apparent that, since we have here a coupled system possessing two dis-
tinct coupled frequencies 2, and Q,, self-excitation may occur with either one

of these frequencies. Thus one obtains two values for p = p, + up;, namely,

. 1 Q-w, 1 1 Q@ -wl 1
p =732 5 P11 Q-2 1T - ¢ g P22 9'121 — _925' =

[84.14]
. 1 wi-0 1 1 wi—QF 1
p=192"'2‘p1"’1922_92%1_g2—'gpz“’zsyllz_gzzl_gz

From these expressions it follows that the frequency and the decre-
ment during the transient state are glven by either pair of the following

expressions:
1 QF — wi QF — wl
Q=8; 6= 2(1 — g9 (Pl“’l '912 — .sz + P, 912 — le) (84.15]
1 wl — QF w2 - Q2
=8, 60,= —————2(1 — gz)(,:tl(,.»l——~—-—gj2 — ,sz + pyw, —912 — sz) [84.16]

It is seen that the frequencies of a non-linear system subject to a self-
excitation to the order of approximation considered here are the same as
those of the corresponding linear system, Equations [81.12] and [81.13], in
which the dissipative parameters, both linear and non-linear, are neglected.
Moreover, since neither Q, nor 2, depends on the amplitude, the system 1is
isochronous.
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The expression [84.15] for the decrement becomes

2 2 2 2
_ 2 = 'QI - W Rl + Re(a) Ql - wl Rz u _|
1 - g% 6,(a) (——3“12_ 92) st (912_ 922)2L2 [84.17]
when p, and p, are replaced by their values. If 4,(0) < 0, self-excitation
with frequency @, occurs. With the use of Equation [84.17] this condition of
self-excitatlon with frequency 2, can be written as

|R.(0)] > |Ryy [84.18]

where R, 1s the critical value of the equivalent resistance R,. Thls criti-
cal value is '

2 2
lﬁ_Ql — W

T o o) [84.19)

Ry = — (R, + R
With the use of [84.19], Equation [84.17] can be written

— g (L -w B 9 —wf By Rfa)
- g = (Gr—ghr 57~ + Gror 3) (1= F ) [8+.20]

The decrement 4,(a;) = 0 when
Q2 — w?
R.(a) = — (Rl + Rz% _12_‘_‘0{2')
2

QF - w;

The stationary amplitude @, of the self-excited oscillation is then obtained
from the explicit form of R,(a,), as previously shown. Introducing the nota-
tion

912 - (4)22 Rl 912 - (4)12 Rz

pu— 2 —
(1 = ¢*)6y,(a) °F —of 7L, + or —of 2L, [84.21)
we can write Equation [84.20] as
8,(a) = 601[1 - I;;(“)] (84.22]
01
and similarly
é,(a) = 602[1 - %(“)] (84.23]
02

where d,, and d,, are the decrements of the linear circuits with frequencies
£, and 2, and R,, and R,, are the corresponding critical values of the equiva-
lent non-linear resistance R,(a). It is to be noted that the possibility of
determining p, from the second equation [84.11] depends on the condition
Ap(po,o) + 0, as follows from the theorem on implicit functions. On the other

hand, the expression
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1
1 — g¢°

2p(2p¢ + QF + QF
2, 2
W, W,

A,,(Po ’0) =
becomes

25000 - 2)) o 2 (2% — QF)

2,2 3, 2
Wy Wy wy'W,

for p, = jR,0r p, = JjQ, respectively. Hence, the condition Ap(po,O) +# 0 1s
fulfilled only when Q, + K,, that is, when both circuits are no¢ tuned in
resonance to the same frequency. :

Whenever the circuits are tuned in resonance to the same frequency,
the preceding method ceases to be applicable and a special procedure indlcated
in Section 86 will be necessary.

85. NON-RESONANT SELF-EXCITATION OF A QUASI-LINEAR SYSTEM
We shall now generalize the conclusions of the preceding section
which were obtained for a particular non-linear system with two degrees of

freedom.
The general condition of self-excitation of a quasi-linear system

i1s, as previously,
Z(p,u) + urla) =0 [85.1]
where Z(p) is the transient impedance of the linear system and ur,(a) = R.(a).
In general, the impedance can be represented by a rational function,
namely,

Z(p,u) = '—;%Z—; (85.2]

where A(p,u) and B(p,u) are certain polynomials prime to each other; see Equa-
tion [84.7].  For the system shown in Figure 84.2, the quantity A(p,u) is
given by Equation [84.10], and one finds

2
Blo.w) = Co(lr + utl + 1) [85.3]

In the relation [85.2], the system is conservative if u = 0, and the impedance
consists only of inductive and capacitive reactances. Moreover, the osclilla-
tions are undamped so that p = jQ and Equation [85.2] becomes
2(i9) = 5020 (85.4]
This expression is, therefore, purely ilmaginary, that 1s, it is an
odd function of ;jQ. Hence, if A(p,0) is even, B(p,0) must be odd and vice
versa. Since B(p,0) # 0, the condition for self-excitation is obviously
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Alp,u) = 0 (85.5]

If the system is non-dissipative, g = 0, and we know that the decrement 1is
then zero. We conclude therefore that the equation

A(p,0) = 0 (85.6]
has purely imaginary roots p =;7Q. Let p = 7Q, be one such root; then
A(p,0) = (p* + QD) é(p) (85.71

where ¢(79,) + 0. The quantity A(p,u) can be expanded in a Taylor series
around u = 0; when u is very small we can write

Alp,u) = A(p,0) + uA,(p,0) [85.8]

The first term, A(p,0), contains the capacity and inductance terms; the sec-
ond, uAu(p,O), the dissipative components. Since this term is proportional
to u, ohmic resistances for a series connection, or ohmic conductances for a
parallel connection, appear in it linearly and homogeneously. It follows,
therefore, that A(p,0) 1s odd and A,(p,0) 1s even and vice versa. In view of
this and of Equation [85.7], it is clear that 5%%%%%3 and:g%%f%% are odd,

since, if A(p,0) 1s even, B(p,0) is odd and &(p) 1is even.
The characteristic equation of a non-linear system is

A(p,u) = Alp,u) + uB(p,u)r, = 0 (85.9]
In order to solve this equation we assume a solution of the form
p=j.Qo+/1pl+ ce [8510]

By the theorem of implicit functions, this is possible since from Equation
[85.7] we find

[Ap(p,O)]pzjgo = 22,602, * 0
Using the second equation [84.11], we find

P A, (jR2),0) + B(52,,0)r,
A,(5%2,0)

p = .7.-90 -

Aj2,0)  B(jR,0)R,

T H250,602) 252,808, (85.11]

= j'QO

In view of the fact that both Aw/¢ and B/¢ are odd, we conclude that the quan-
tities

60 = M and k

= u B(]QO’O)
272,6(792)

T 22,6090 (#5121

are real. From Equation [85.11] we obtain the frequency and the decrement,

namely,
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Q=9 and 6= 6 + kR, (85.13]

If this procedure is applied to the solution of the characteristic equation of
the linear circuit

Alp,u) = 0 [85.14]
one obtains to the first order the expression
p = j-Qo - d0 [85-15]

From the second expression [85.13] it follows that the condition of
self-excitation with frequency @ = 2, and 4(0) < 0 reduces to the condition

R.(0) < R, [85.16]

where R, = --%—Q,is the critical value of the equivalent resistance R, (a) at
which the decrement & vanishes and the oscillation becomes stationary.

In conclusion, one can state that, if @, and d, are the frequency
and decrement of a linear system and ¢f 2, 7s not tuned in resonance with
other frequencies of the system, the frequency and the decrement of a quasi-

linear system, linearized by the method of equivalent linearization, are

, Q=29
(85.17]

8 =4, [1 - R;e(oa)]

As was previously mentioned, the condition of quasi-linearity per-
mits neglecting the dissipative parameters, which are assumed to be small
quantities of the first order, as far as the frequency determination is con-
cerned, since the error is of the second order, that is, of the order of u?.
In other words, the quasi-linear systems 1n a non-resonant state are also

quasi-isochronous.

86. RESONANT SELF-EXCITATION OF A QUASI-LINEAR SYSTEM

We shall now investigate a quasi-linear éystem in which the two
frequencies 2, and 2, are adjusted so that they are the same. This condition
shall be called the resonant self-excitation of a system with several degrees
of freedom. For simplicity, we shall consider a system with two degrees of
freedom of the kind previously investigated in connection with Figure 8u4.2.
It 1s to be noted that in order to have the difference Q, - 2, of the two fre-
quencies very small, say of the first order of smallness, it is necessary that
the difference of the component, non-coupled frequencies w, and w, of each de-
gree of freedom also be small and of the same order. This follows from Equa-
tions [81.12] and [81.13]. Moreover, the coefficient M of mutual inductance
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must also be small, that 1s, the coupling between the two degrees of freedom

must be rather "loose." These conditions imply that

22 =14 uP; g=4Q [86.1]

W)
Equation [84.9] ean now be written
(2 + péx + 1)[902 + u(l + uP)éz + (1 + uP)z] - u?Q%z* =0 [86.2]

where z = p/wl. Substituting in this equation the power series solution
x =7+ ux, + . and equating the coefficients of equal powers of u, one ob-
tains the following equation for z:

25z, + 760252, + jé, + 2P) — QP =0

When rearranged, it becomes
Az} + 2u,(¢, + &, — 2;5P) + Q* + £,€, — 25P¢ = 0 (86.3]

Determining its roots, and using the notations ¢, - ¢, = Mand Q% + P2= N,
one obtains to the second order the following expression for z = j + ux,:

= —u(fi T 6 4 _H 2 _ Y T _ AN)Z
e T I-l( ) W2= VM 4N + V16PM + (M 4N) +

4
+ilt+ 2t L VaN— M VIR ¥ (M7 - ANP |  [86.4]
J 2 - 02 ’
Putting
2
(R, + R, -~ R))*Cluw} — 4[92 - (1 - %)} = 2p
1 .
and [86.5]
2
4R, + R, — B CGl(1 — 22} = g2
W,
one obtains to the first order the following expression
_ Ry + R, + R, ¥ Liw,Vn + Vd% + p*
- 4L,
- + — VdZ + n2
+ .7'[‘4’1 + 2(w, — w) * w‘lil/ n+Vd: + g } (86.6]
which gives the frequency Q and the decrement ¢ as
Q =91(a)=ﬂ% + %/—n+Vd2+n2
(86.7]

5.a) = Bt By + B, = Lo Vo + V& T 72

0 =
4L,
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or
Q:.Qz(a)=———w1;w2-—94—1—}/—77+1’d2+772
(86.8]
2 4L,

The essential feature of these expressions is that both the frequency 2(e) and
the decrement d(a) are non-linear functions of R,(a). This leads to the fol-
lowing important conclusion:

When the oscillatory system is tuned in resonance so that w; = w, = w, the

system ceases to be isochronous.

Developing the expressions [86.7] and [86.8] in terms of the param-
eters of the system, we obtain the following two sets of expressions for Q(a)
and é(a):

1. If (R, + R, - R,)C,w > 2¢g, then

R,+ R, + R, — LwV(R, + R, — R,)?C2w? — 4g°
4L,

and (86.9]

Ql(a) = w; él(a) =

R, + R, + R, + LwV(R, + R, — R))?C2w® — 4g%
4L,

Q,(a) = w; d,(a) =

] R R, + R
2,(a) = w[l + %}/492 - (R, + R, — R)*Cle|; 4,(a) = == * 1L :
- 1
and , [86.10]
Qz(a) — w[l _ %‘/4!72 _ (Re ¥ Rl _ R2)2C12w2 : 62((1) = R, + fi + Rz
. 1

It is thus seen that the condition of resonance of a quasi-linear
system with two degrees of freedom introduces a radical change in the behavior
of the system. In a later chapter it will be shown that resonance in a multi-
periodic system is characterized by another feature, namely, the differentilal
equations of the first approximation do not permit a separation of variables
although in a non-resonant condition such a separation 1s always possible and
simplifies the problem appreciably.



CHAPTER XIV

SUBHARMONICS AND FREQUENCY DEMULTIPLICATION

87. COMBINATION TONES; SUBHARMONICS

The non-linearity of an oscillatory system accounts for the appear-
ance of additlonal frequencies which we shall now investigate.

This phenomenon was first studied by Helmholtz (3) in connection
with the theory of physlological acoustics. He discovered that the ear re-
celves sounds which are not contained in the emitted acoustic radiation, and
he has shown how the slightly funnel-shaped form of the tympanic membrane of
the ear may account for unsymmetrical oscillations represented by a non-linear
differential equation of the form

4+ wir = — B2" + X(t) [87.1]

where z 1s the displacement of the membrane and X is the exciting force pro-
duced by the periodically varying pressure of a sound wave. If the sound
wave contains two frequencies, say w, and w,, the function X is of the form
X =a, cos w;t + a, cos w,yt. It can be shown that the oscillation expressed
by Equation [87.1] contains, in addition to the frequencies w; and w,, the
frequencies w; - w, and w; + w, which Helmholtz calls combination tomes.

It is simpler to reach these conclusions from the well-known prin-
ciples of modern radio technique. Consider a non-linear conductor of elec-
tricity, an electron tube, whose characteristic is

i, = f(v) (87.2]

where 7, is the anode current and » is the grid potential. We shall be inter-
ested only in the alternating components of these quantities. It has been
shown in preceding chapters that this experimental relation can always be ex-
pressed in the form

i, = a0 + a,v° + age’ + - (87.31]

a
The number of terms in this series depends on the degree of the approximation
desired, and it is shown (4) that in practice the coefficients decrease with
sufficient rapidity to justify the retention of only a few terms. In order to
simplify the argument, let us assume that the impressed grid voltage 1s of the
form

v = k(cosw,t + cosw,t) [87.4]
that 1s, it 1s composed of two alternating voltages in series having the same

amplitude k but two different frequencies w; and w,. Substituting [87.%4] into
Equation [87.3], one obtains
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i, = ak(cos wit + coswyt) + ayk*(coswit + coswyt)® + azk’(coswt + cosw,t)® [87.5]

when the expansion is limited to the first three terms. The first term con-
tains the original frequencies w, and w,; the second gives the frequencies
2wy, 2w,, W, + w,, and w; - w,; the third term yields the frequencies w;, 3w,
Wy, Wy, 2W; + Wy, 2w, - Wy, 2w, + W, and 2w, - w;~. The current ¢, will con-
tain, therefore, the harmonics of the following frequencies:

Wy, Wy, 2w, 2w,, 3w, 3wy, W + Wy W, — Wy, 2w, + Wy, 20, — Wy, 2w, + W, 2w, — W,

Thus, for example, if w, = 27 x 100 and w, = 27 x 120, where f;, = 100 cycles
per second and f, = 120 cycles per second, the frequency spectrum of ¢, will
be composed of the following frequencies:

20, 80, 100, 120,| 140, 200, 220, 240, 300, 320, 360

It is seen that the combination frequencies spread out on both sides of the
impressed frequencies, f; = 100 and f, = 120. In the study of this phenom-
enon, attention 1is usually centered on the frequencies lower than the im-
pressed ones (in this case, f = 20 and f = 80); these lower frequencies are
called subharmonics. The term "subharmonics," instead of the expression
"eombination harmonics," is sometimes applied, although perhaps improperly,
to terms of the form

w, = Mw, + Nw, (87.6]

The problem of producing subharmonics in electric circuits is sometimes called
the problem of frequency demultiplication.

In Equation [87.6], m and » are integers which depend upon the na-
ture of the polynomial. Thus, for instance, in the previous example these
combinations are (0,0); (1,0); (2,0); (3,0); (0,1); (0,2); (0,3); (1,1);
(1,-1); (1.2)5 (1,-2); (2,1); (2,-1).

The terms (0,0) are constants arising from the trigonometric trans-
formations.

As follows from the foregoing analysils, the combinatlon frequencies
are due exclusively to the non-linearity of the circuit. This can be demon-
strated by the following experiment mentioned by H.J. Reich (4). The volt-
ages from two audio-fregquency oscillators are filtered so as to obtain two
pure sinusoldal oscillations of angular frequencies w; and w,, which are
applied to the grid of an electron tube. The voltage across the anode resist-
ance 1s applied to the input of a low-pass filter. The various combination
frequencies can thus be heard in a telephone connected to the output of the
filter. If the oscillators' frequencies are changed, the whole spectrum of
the combination frequencies changes, but the relation [87.6] holds for any
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value of w, or w,. If, instead of a low-pass filter, a high-pass filter is
provided, the high-frequency part of the spectrum of the combination frequen-
cies can also be recorded. The relation [87.6] is applicable throughout the
whole spectrum. If an oscillating grid potential of the form v = a; cos w,t +
+ a, c0S wyt is applied in the region where the electron-tube characteristic
1s fairly rectilinear, the spectrum of the combination frequencies fades away.
This shows that the combination frequencies are due to the non-linearity of
the circuit.

If a combination harmonic of amplitude e, , 1s applied to a linear
network of impedance Z(;j2), the current ¢, , due to this harmonic will be

Z’ﬂ"m

= Enym cos[(n.Ql + m2)t + ng, + m¢2]‘ (87.7]
z[jtng, + m@)

88. EQUIVALENT LINEARIZATION FOR MULTIPERIODIC SYSTEMS
In the preceding chapter a quasl-linear system with two degrees of
freedom was discussed. It was found that solutions in terms of frequency and
decrement were given, not by one set of relations, but by two such sets. Thus,
for example, we always have two pairs of relations
Q=29. =460
and
Q= 2,0a); é=26,a
In still more complicated systems there may be a still greater num-

ber of pairs of solutions:

........

On the basis of the method of the first approximation, Chapter X, this means
that the most general oscillatory system is characterized by oscillations of

the form
7= 1, = a;cos Y,
T =1, = a,co8 Yy

* From now on we shall designate the component frequencies by capital letters @, and @, reserving
the small letters w; and wp for the frequencies of uncoupled linear systems, as was done in the pre-
ceding chapter.
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It is recalled that ¥, the total phase, in these expressions contalns both
the frequency 2, and the ordinary phase ¢,, as follows from the felation
Y, = .t + ¢,

The most general forms of the equations of the first approximation
for both a, and ¥, are .

da d
9 - - e =gy k=12 n 88.1]

If the system 1is linear, the principle of superposition 1s applicable, that
is, .

i =4+l + -+ i, =acosyP + azeosyY, +- - +a,cosy, [88.2]
For non-linear systems this ceases to be applicable, and, if we wish to make
use of the principle of superposition, we must introduce further definitions
of the equivalent parameters of multiperiodic systems. In order to do this,
it is sufficient to extend the Principle of Equivalent Linearization to sys-
tems where two distinct oseillations exist. This presupposes that the oscil-
lations are mot tuned in resonance with each other. We shall consider again
the system shown in Figure 84.2 and note that its impedance across the ter-
minals of the non-linear conductor N is

(2 — Q% 4 256, 2) (22 — 22 + 255,,Q)
Z(]Q) - CJ’.Q(A)IQ((‘)Z2 — 2% + 2_7';02(029) [88°3]

where 2, and @, are the angular frequencles, and d,; and d,, are the decre-
ments of the linear system given by Equations [81.12], [81.13], and [84.21],
respectively, to the first order of small quantities. Equation [88.3] is ob-
tained from Equation [84.6] by making use of Equations [84.10] and [84.14].
Since for quasi-linear systems the decrements d,; and d,, are small, one can
put é,, = ué;; 04, = ué,, and we obtain

(@2 — Q% + 2;5uQ)(2? — @ + 2j4,uQ) (88.4]

Z(]Q) = C]‘lez(wgz — 22 + 2]/162(4)2.9)

where ¢,, ¢,, and ¢, are small. This impedance is impressed on a non-linear
conductor having the characteristic

e =—F@) = - uf(@) (88.5]

where p emphasizes again the quasi-linearity of the example considered here.
The function f(7) can be approximated in practice by a polynomial. If u = O,
the system is linear and the principle of superposition holds, so that

7= 14+ i, = a; 208 (@it + @) + a,cos(Qt + ;) [88.6]

where a,, a,, ¢,, and ¢, are constants.
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If u'¢ 0 but very small, one can still consider Equation [88.6] as
approximately correct and substitute it in Equation [88.5]. Thus,

e = — uf(i) = — uf(iy + ;) = — ufla;cos (2t + ¢;) + a;cos (2,t + ¢2)] (88.71]
Consider now the function of the two varilables p, and ¥,, namely,
L
fla,cos P + azcosypy) = f(2)

Since f(z) is a polynomial, it can be represented as a finite sum of harmonics
of the type
A, ncos(ny, + my,)

so that
flageos y + aycosy) = 3 37 A, cos(ny + mipy) (88.8]

where the index n runs from zero through the positive integers and where m has
positive integral values for n = 0 and runs through the negative integers for
n # 0. For a polynomial of the third degree these values for m and » were
given in the preceding section. From [88.7) and [88.8] it follows that

e = — ,uZZAn,mcos[(n.Ql + m,)t + ne, + m¢2] [88.9]
n m
Hence the corresponding combination harmonic ¢, ,, of the current will be
© A
Tnym = — B nm cos [(n.Ql + m,)t + ne, + m¢2] [88.10]

Z[jm2, + m2,)|

and the total current will be the sum of all these harmonics.

It 1is apparent that the amplitude of each combination harmonic will
be
| 1A nml

Z[j(n2) + m2y)|

P e i

Written explicitly, in view of [88.4], this expression becomes (88.11]
1

2
,uAn,maf (nQ, + mR,) [wzz - (nQ + mQZ)z] + 448 (nQ, + mQ,)

1
ol V2 - n@+ m@) '+ au'eZn@, + m@,f | [2F — @, + m@) T + 448202, + m@,)
From this expression it 1s observed that, if for some values of » and m nei-
ther of the expressions (nQ, + mQ,)® - 2,° or (nQ, + mQ,)® - Q,° becomes
small, the amplitudes Ifn,ml will be small because of the small factor u.

If, however, for a given pair of numbers (7 and m), one of these ex-
pressions, or, which is the same, n2, + {mt 1)Q, or (n t 1)Q, + mQ,, becomes
small and of the first order, or zero, both the numerator and the denominator
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-

in [88.11] become small and of the same order so that |¢, ,| may be finite.
This happens either for n =1, m= 0 or for = = 0, m=1.
It is seen from [88.9] that all harmonics of e are small except the
two principal harmonics
— uAjgcos (2t + 1), — uA, cos (2;t + @) [88.12]

Hence, aside from the two corresponding harmonics of current, all others are
very small and can be neglected. Thus we have

e = — pA gcos (@t + ¢1) — pd,,cos(t + @2) [88.13]

From Equations [88.5], [88.7], and [88.13], by the Principle of Equivalent
Linearization, we obtain

1
uAy, = Z—FQII'F(% cos Y1 + ay cos iy)cos Yy dydi;

(88.14]
1 2 2r
nAy, = ot ffF(alcos Y1 + ay cos Y;) cos Yo di di,
00
Defining the equivalent non-linear parameters by the expressions
R. = 1 fxfz‘F(al cos ¥; + @y cos Yg)cos Y dy,dy
. 277'2(11 33 1 1 1 2
and o [88.15]
” 1
R, = omta, jofF(al cos ¥y + ascos P)cosi, A d,
one has
ﬂAl,O = R‘,’al and ”AO,I = R;’ag
and, by [88.13],
e = — (R4 + R.%) [88.16]

This equation shows that in the example of non-resonance considered here the
non-linear characteristic can be replaced by the corresponding linear one in
which the variables 7, and 7, can be separated in the_ first approximation.
This generalization of the Principle of Equivalent Linearization for a non-
resonant system simplifies the problem because the variables can be separated.

We obtain the following systems of equations of the first approxi-
mation for the equivalent system:

d;ll. rr— / % —_ ”
di = dal, dt = Ja2 [88 ]
a7
M = Q' % = Q"
dt oodt

Since the total phases are ¥, = 2,t + ¢, and ¥, = Q,¢ + ¢,, one can write the
preceding equations in the form
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day _ _ 5o dag _
dt - dal, dt - Jaz
[88.18]
4 _ o _ . 4% _ on _
T Q £y i 2 2,

In view of [88.16], self-excitation of the equivalent linearized system can be
represented by the equation

Z(GR = 804 + Z(jQ" — 6")iy + Riiy + R, =0 [88.19]

whence
Z(j.Q’ —4)+ R, =0, Z(4FR" —8")+R) =0 [88.20]

Because ¢, and ¢, are constants, one has from [84.23]

R;
R

koo =afl -2 (8s.21)

Q' = 91; Q" = 92; 6, = 61(1 - R
02

where R, and R, are the critical values of the equivalent parameters R, and
Re” corresponding to self-excitation with frequencies @, and , respectively.

One concludes, therefore, that in the first approximation and in the
absence of resonance,

7 = a,cos (2t + &)+ ascos (2t + ¢o) [88.22]

the principle of superposition still holds, and the stationary amplitudes a,
and a, of the quasi-linear system are given by the system of differential
equations in which the variables can be separated, namely,

day _ _ _ Re) = dap _ _ _ R
dt = 61(1 ROI)GI, dt (’2(1 Rog)a2 [88.23]
This result can be generalized for systems with » frequencies; however, this
generalization will not be presented here.

89. INTERNAL SUBHARMONIC RESONANCE

In the theory of linear oscillations, an oscillating system is said
to be in "resonance" when the frequency of the external exciting force coin-
cides with the frequency of the system. In non-linear systems the situation,
as was shown, 1is far more complicated.

We saw that a non-linear system with one degree of freedom acted
upon by an exclting force with two or more component frequencies has a dis-
crete spectrum of combination frequencies which are more numerous than the
exciting frequencies.

On the other hand, a linear system with several degrees of freedom
possesses the so-called coupled frequencies, the number of which is equal to
that of the degrees of freedom. For non-linear systems with several degrees
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of freedom, the situation becomes very complicated. In fact, if one considers
one particular circuit of the system that 1is coupled to other circults, the
excitation of this circuit occurs through couplings and, by virtue of the non-
linearity, is resolved into combination frequencies which, in turn, react on
the other circuits and cause combination frequencies in these circuits 1f they
are non-linear. It must be noted, however, that not all frequencies may ap-
pear in the process of self-excitation but only those for which the initial
decrement 6j(0) < 0. Moreover, as long as the principal frequencies do not
coalesce, the method of equivalent linearization introduces a further simpli-
fication by providing a set of differential equations of the first approxima-
tion in which the variables can be separated.

A new complication arises, however, when two frequencies of the
spectrum are nearly the same and coalesce at the limit; we shall call this
internal resonance of the system. It occurs whenever two or more component
parts of the system are tuned to the same frequency. The word internal used
in this definition merely emphasizes the fact that the actuation 1s effected
through couplings without involving any externally impressed perlodic force.

We shall consider agailn the system with two degrees of freedom shown
in Figure 84.2 which was the basis for our discussion of the non-resonant con-
dition. The impedance of the system is

(@F — @ + 2j5uQ)(QF — Q% + 2;t,uQ) (89.1]

249) = JCwiQ(wE — Q% + 2jué,w,Q)

This impedance is impressed on a non-linear element N with characteristic
. e = — F@G) = — uf(?) [89.2]
We shall now assume that the ratio of the frequencles 2, and 2, of

the linear system is not far from being a rational number; this fact is ex-
pressed by the following relations:

Q= —:—.Ql + ua  with f £ 0 (89.3]

where, without any loss of generality, » and s are relatively prime integers,
and o 1s a finite number so that po is small and of the first order. It is
apparent that for u = O the system degenerates into a linear one with coupled
frequencies

In this case the principle of superposition holds; 7 = #; + 7, where 7; =
@, cos ¥, and i, = a, COS Y,; ¥, and Y,, the total phases, are equal to
2.t + ¢, and 2,¢t + @, respectively; and a,, @,, &,, and @, are constants
determined by the initial conditions.
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For u # 0 but very small we can still use the principle of super-
position to the first order of approximation, as was just shown, and write

e = — ,af[alcos(Qlt + @) + a,cos (siglt + ¢2)] ’ (89.4]

The function f is periodic with period %”l—s. Since we assume, on the other
hand, that this function is approximated by a polynomial, it 1is possible to
express the function by a limited number of terms of a Fourier series. Thus

we obtailn

f[alcos (@it + ¢y) + a,cos (%.Qlt + ¢2)] = Z [Am cos %.Qlt + B, sin %—.Qlt] [89.5]

m>0

where 4, and B, are certain functions of the variables a,, a,, ¢,, and g,.
The harmonic I, of the current will then be

- u[Am cos %.Qlt + B, sin % Qlt}
I, = - (89.6]
255 2)

Since the factor p is small, all harmonics of the current are small except the
two harmonics I, and I, with frequencies %Ql and 2,, which remain finite in
spite of the smallness of u; see Equation [88.11]. If, therefore, one neg-
lects in the first approximation all harmonics I, for which m # r and m + s,
Expression [89.5] reduces to :

e = — u(A, cos;"szlt + B,sinslglt),— u(A.cos 2t + Bysin@,t)  [89.7]
The expressions in parentheses in this equation can be written

r .r _ T (T
A, cos ;.Qlt + B, sin ;Qlt = C,co8 (s ot + ¢2) + D, sin (8 ot + ¢2)
. . (89.8]
A, cos 21t + B,sin@2,t = Cycos (it + ¢;) + D, sin(,¢t + ;)

where the constants C,, D,, C,, and D, are given by the Fourler procedure:

C, = %j}(al cos [s‘r - %(3952 - r¢1)] + a, cos r‘r)cos rrdr
D, = %j}(al cos[s-r - %(sqs2 - r¢1)] + a, cos rr) sin rrdr
(89.9]

C, = %j}(alcos sT + a,cos [r‘r + %(sqsz - r¢1)])cos stdr

D, = %sz}(al cos sT + azcos[r'r + %(sq&z - 7‘¢1)]) sin sTdT
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If we put s¢, - ré, = 6 and introduce the notations

2

Rl = % fF’:a/l cos(sT - %) + a, cos 7‘7-] cos rTdT

20
1 F 9
Y = — —fF[al cos(sr - —) + a,cos 1'7'] sin rTdr
may § r
[89.10]
, 1 9
R, = — |F|a,cos sT + ajcos (r-r + —) cos sTdT
Tay ) s
2% -
, 1 o\ .
Y = — — |FlajcossT + azcos(r'r + —) sin sTdT
may s

the expressions in Equation [89.7] become

/r M r — n _1; — n : z
,u(A, cos ;.Qlt + B,sin ;—Qlt) = R/a, cos(8 Qit + ¢2) Y. a, sin (s .t + ¢2)
_ " v r
= (R; + ;Y. )azcos(;.Qlt + ¢2) [89.11]

u(A cos ,t + Bysinyt) = R,a;cos(@it + ¢1) — Ya,sin(Qt + ¢))

= (R + jY))arcos (@t + @) (89.12]
When these values are substituted into Equation [89.7], it becomes

e = = [(R + )i, + (R + ¥, [89.13]

It is seen that in systems having internal resonance the non-linear
characteristic can be replaced by the equivalent linear one given by Equation
[89.13]. The difference between resonant and non-resonant systems is that in
resonant systems the equivalent limear impedances are complex quantities,
whereas in mon-resonant systems they are real ones.

This modification of the equivalent parameters for internal reso-
nance introduces an essential difference in the form of the equai:ions of the
first approximation. For example, let @', 2", ', and ¢” be the frequencies
and decrements of the equivalent linear system. The equations of the first
approximation are then

day

— s Gay _ o,
ot d'ay; TR d"a,
[89.14]
%=Q'- % = g"
dt T d

where, by [88.6], ¥, = 2,t + ¢, and ¥, = 2,¢ + ¢, are the total phases. Equa-
tions [89.14] become
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[89.15]

déy _ o _ . 92 _ o0 _
72 U T

For dynamical equilibrium the impedance drop and the impressed voltage must
balance each other for both oscillations of the linearized systems; this gives

Z(j.Q’ — 8% + Z(jQ" — 6"); + (R, + 7Y, + (R) + 7Y )i =0 [89.16]
Hence

Z(jQ — &) + (R + jY.) = 0; Z(GRQ" — 46" )+ (B + jY.) = 0 ([89.17]
It 1s noted that these equations are the same as Equation [88.20] except that
R, 1s now replaced by R, + jY,. The algebraic work for Equations [89.16] and
[89.17] is identical to that for Equation [88.20], provided one does not sepa-

rate the real and the complex terms. Hence the solution of Equations [89.17]
is the same as that of [85.17], which can be written as

Lo

p, =92+ 61’[1 - R,

Without repeating the procedure, we can, therefore, write directly

Y' Y"

' = + e_. " = -

Q=9 + 4 Ry Q Q + 6 R ' [89.18]
A Re’ . no__ _ !

o =81 - Rm)’ 5" = &1 R_;z) [89.19]

Hence, for the first approximation in a resonant system, one obtains
. r
i = a;cos(2;t + @) + a, cos(—s—.Qlt + ¢2) [89.20]

where a,, a,, ¢,, and ¢, are given by the equations

day _ _ oy _ Re)\ = daz _ _ _ R
dt "1(1 Rm)“l' dt "2(1 Roz)“z
[89.21]
dé1 _ 6y, 4y _ , _ T 8y o
dt - ROI Ye ’ dt - ‘Qz S .Ql + R02 Y;

It is noted that the four equivalent parameters R,’, R,”, Y,’, and Y,” appear-

€
ing in these equatlons are now functions of only three variables a,, a,, and
9, as follows from [89.10]. The last two equations [89.21] can then be

written

d6 _ d¢y _ dé; _ _ 8y u _
2t sdt Tdt = 88, r91+sR02Y, r

9

ROIYe (89.22]
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For a steady-state condition, a, = constant, a, = constant, and
= constant, which gives

(1 - Re,)al = 0; (1 - Re”)az = 0

ROl RO?
(89.23]

4y 0

$Q, — rQ + s3=Y — rpRY =0
2 ! ROZ ) ROI
The last equation can be written
s(Q + 6—2Y") - r(.Ql + 4 Y) =sQ"—rQ =0 (89.24]
27 Ry ¢ Ry '

where Q' = @, + RLOII Y, and "= @, + 7%22— Y,”.

Equation [89.24] shows that the stationary oscillation of the sys-
tem occurs with two frequencies Q' and 2” whose ratio is a rational number.
In addition to these frequencles there exists a frequency spectrum correspond-
ing to the harmonics of the order %‘Q’, as can be shown from the study of the

refined first approximation, which we omit here.

90. SYNCHRONIZATION

In the previous notation the total phases are y, = @,¢t + ¢, and
Y, = LQt + ¢,, whence ¥, - T¥,= @, - L4, = 6. For a stationary state
dé/dt = 0 and 6 = ccnstant, which gives

s, — r¥; = 6 = constant [90.1]

Thus the total phases are "locked in synchronism" with each other.
The question now arises whether the condition [90.1] is stable. Since the
four equivalent parameters R, , R,”, Y,, and Y,” are functions of the three
variables a,, a,, and 6, consider special values a,,, a,,, and 6, of these
parameters corresponding to the stationary condition of the system. Following
the method of variational equations, Chapter III, and considering arbitrary
small increments Aa,, Aa,, and 46 of the first order of small quantities, one
obtains

d ! ’ ’

Zt—AaL1 = Ra1 (@19, @99,6,)40, + Ra2 (a5, Ggq, 6p)40, + R;(a,a,,0,)460

d " ” "

d_tAa2 = Rq (a0 0300 00)40a; + R.,z(am,am, 60)Aay; + Ry (@ @sgr 6,)46 [90.2]

d
7740 = F, (ay, a3,65)4a, + F,, (ayp @20, 60)4a; + Fy(a,y, ay,6,)A6
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where B R
R = - 61(1 - .R_Ol)al; R = - 62(1 - R01 )ag
and [90.3]
: ds (] ,
F =32 —rQ + s=2Y" — r=1-Y,
2 ! R02 ROl

The question of stability 1is reduced to the investigation of the nature of
the roots of the characteristic equation of the variational equations [90.2].
If all real parts of these roots are negative, the synchronized oscillations
are stable; if any one of these parts 1s positive, the synchronization is un-
stable. Assume that the oscillations are stable; then, for sufficiently small
departures of the parameters characterizing a disturbance in the synchronized
condition [90.1], these departures satisfy the variational equations [90.2].
It is apparent that this is possible only for a certain range of Aa,, Aa,,
and A6 around the values a,,, a,,, and 6,. If one exceeds this range, the
conditions of stability may no longer be fulfilled.

The interval of variation of the parameters Aa,, 4a,, and 46 which
results in the stable condition of synchronized oscillations [90.1] is ealled
the zome of synchronization. Non-linear systems are characterized by the
presence of such a zone. It is absent in linear systems, or, in other words,
one can say that linear systems are characterized by a zone of synchronization
reduced to zero. It is thus seen that the phenomenon of synchronization is a
characteristic property of non-linear internal resonance.

91. INTERNAL RESONANCE OF THE ORDER ONE ‘

Consider now a particularly important case when » = s, that 1s, when
Q,~ Q,, and wy,/w, =1 + uP, and g = uQ; see Section 86. For u =0, w, = w, =
w and for the first approximation we assume

i = ajcos(wt + ¢;) + aycos (wt + ¢2). [91.1]

Putting a, cos ¢, + a,cosd, = acos¢ and a, sin ¢, + a, sin ¢, =
a sin ¢, one has

a® = a? + a? + 2a,a,cos (¢; — @) [91.2]
Equation [91.1] can be written
i = acos (wt + @) [91.3]
Therefore, oﬁe has a simple relation -
Z(jw) + Re(@) =0 [91.4]

It was shown in Section 86 that the frequencies 2,(a) and Q,(a) and
the decrements 4,(a) and 62(a)'are given by Equations [86.9].
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The equations of the first approximation for the amplitudes a, and
a, and phases 2, and Q, in Equation [91.1] are therefore

d
ﬁ = — §(a)ay; %2- = — dy(a)a,
[91.5]
B — 9@y -w; B- 9@ -

where a 1s given by Equation [91.2] and 4,(a), 6,(a), 2,(a), and Q,(a) are ob-
tained from Equations [86.7] and [86.8]. It is apparent that, if 4,(0) > 0
and 4,(0) > 0, there will be no self-excitation. If, however, at least one

of these quantities is negative, self-excitation from rest will take place.
For a steady-state condition the resultant amplitude a is a constant, and from

Equations [91.5]

_ — 6yla)t _ —dz(a)t
ay = Qe ;0 Qg = Qg€

[91.6]
B = bu + [2@) - Wt B = g + [2l0) - W]t

where a;,, @5, @0, and @,, are the integration constants. From Equation
[91.2] one has
a® = a)e - + azzoe_zoz(a)t +

+ 2ay, azoe_[dlm + ool COS([Qz(a) - 'Ql(a)]t + @20 — ¢10) [91.7]

If 6,(a) = 0, then a = a,y = a,; if d,(a) = 0, then a = a,y = a,. In the
first case the oscillation will occur with frequency‘QI(a) and its harmonics;
in the second, with @,(e¢) and its harmonics.

The oscillations in the first case wlll be stable if g%} > 0 and
é, > 0, which means that the oscillation with frequency 2,(a) will die out.
In the second case the oscillations will be stable if %gf >0 and 4, >0,
that 1is, the oscillation Q,(a) will die out.

For a resonant system, the investigation of the four equations
[91.5] is reduced to an investigation of three equations; the first two give
a, and a,, and the third gives the phase difference 6 = ¢; - @,.

92. METHOD OF EQUIVALENT LINEARIZATION IN QUASI-LINEAR
SYSTEMS WITH SEVERAL FREQUENCIES

The principal points of the method of equivalent linearization were
outlined in Chapter XII in connection with quasi-linear systems which have "
only one frequency. We now propose to generalize these conclusions so that
they are applicable when, because,gf some couplings provided in the system,
several frequencies are possible.

N~

<
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Let us assume that the oscillations are of the form

r=x+ -+ 2, [92.1]
where z, = a; cos (w,¢ + ¢,), +-- , 2, = a, cos (w,t + ¢,). Substituting
Equation [92.1] into the expression for the characteristic of a non-linear
conductor

y = F(x) [92.2]
one obtains, in general, a Fourier series. Let us keep in this series only
those terms which contain the original frequencies w,, --- , w, and let y,,

*** , ¥, be these terms. Since any term y, will have the same frequency as
the corresponding term z,, we can write y, = S, x, so that Expression [92.2]
becomes

y=y+ -+ y=8Sz;+ -+ S,z [92.3]

It 1s apparent that this procedure leads to the definition of the
equivalent parameters S,, --- , S, on the basis of the Principle of Harmonic
Balance, Section 77. One notes also that the non-linear expression [92.2]
has been replaced by an equivalent linear one [92.3]. Moreover, it is also
clear that by adopting this procedure the terms expressing combination fre-
quencles have been omitted inasmuch as the frequencies of these terms are
generally different from the original frequencies w,, --- , w, appearing in
Expression [92.3].

After the frequencies w;, and the decrements d,, of the equivalent
linear system have been determined, the equations of the first approximation
so obtained can be written in the form

d day

datl = - 6lea1; TS daé = = Onelln ) [92°L"]
. 2 S
dt = Wy, Wy 5 dt Wye Wn [92'5]

In order to improve the accuracy of the approximation, the terms
with combination harmonics omitted in the first approximation are added on
the right side of these equations and appear as external forcing terms. When
there are regular forcing terms, they are added to the harmonics just men-
tioned. Since the equation is now linear, there is no difficulty in carrying
this procedure further.

In setting up the original differential equations, it is essential
to introduce non-linear terms with a small parameter g so that for u = O one
has a linear system without damping.

In the equations of the first approximation only the terms contain-
ing the first power of the parameter u are retained.
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Let us apply these considerations to a linear system characterized
by the impedance Z(jw); the relation between the current and voltage 1s then
e = Z(jw)t.

If the impedance is of the form Z(jw) =
tion becomes

Pliw

olw)’ the preceding rela-

Q(jw)e = P(jw)z' [92.6]

Since for a steady state the operator jw is d/dt, the preceding expression

can also be written

(L) = ()i [92.7]

As was shown in Section 84, Equation [92.7] is also valid for a
transient state. In non-linear systems, as we saw, the current and voltage
have a non-linear relation

e=—F@)= - uf(@)
so that Equation [92.7] becomes

d N._ o dY ..

P(E’ u)z = uQ(dt)f(z) ~ [92.8]
When u = 0 one has a linear differential equation ,

d .
P(d_t’ O)Z = 0
Thus, for example, instead of Equations [88.4] and [88.5], we can write
[92.9]

a2 d o/ 42 d A d (d® ,
(dt2 + 2ub g+ )(W + 2uéy gt 92)2 = - ﬂCwlzlﬁ(d_t‘z t 2ubwy g + wzz)f(l)

which is of the same form as [92.8].

Since we know that for linear systems, that is, for systems in which
i = 0, this equation has two coupled frequencies, let us try to form a non-
linear solutign (x # 0) in the form

{= a;cosy; + ayco8 Py + pzilay,a,, Py, ¥ + uPzalay, ag i, ) + ¢ -+ [92.10]

where z,, z,, --- are periodic functions with period 2z and the functions a,,
@y, ¥, and Y, satisfy expressions of the form

da

Ti-t_l = uXplay,a,) + 12 Xpplay, ) + - - -

da; _ ux, 2X o2y, @) +

a uXy(a,, a;) + uXqpla,,a, tt

J [92.11]

W1 — 9, + ¥yl a) + W ¥play,a) + - -

7]

b Q, + uYy(ay,a;) + uYplag,a) + ¢ - -
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Substituting Expression [92.10] into Equation [92.9] and taking into
account Equatlons [92f11], we can develop the result of the substitution into
a power series of the parameter u. Equating the coefficlents of equal powers
of u, one obtains the expressions for z;, z,, -+ ; X1, X2 <+ 5 Xg, Xop,

5 Yo Yoo ¢+ 5 and Y, Y, i

Carrying out these calculations for terms containing the first power
of u, that is, for z,, X, X,, Y1, and Y,;, one observes that the equations
of the first approximation so obtained are precisely those which were obtained
directly by the method of equivalent linearization. If, however, one retains
the first three terms in Equation [92.10], the calculation results in what
have previously been called equations of the improved first approximation,
Section 68, and so on for approximations of higher orders.

To summarize these conclusions, it can be stated that the method of
equivalent linearization, which was more or less postulated in Part II, can
be Justified on the basis of the preceding analysis and can be generalized for
approximations of higher orders. It can be shown by following the argument
just outlined that 1t is possible to form linearlized differentlal equations
whose solutlons satisfy the original differential equations with accuracy of
the order u, u?, <.. . For a more detailed proof of this proposition, the
reader is referred to the Kryloff-Bogoliuboff text, Reference (1), pages 241
to 2U46.



CHAPTER XV

EXTERNAL PERIODIC EXCITATION OF QUASI-LINEAR SYSTEMS

In preceding chapters we have been concerned with the phenomena of
self-excitation of quasi-linear systems of the autonomous type, that is,
quasi-linear systems in which the independent variable ¢, meaning time, does
not appear explicitly in the differential equations. We shall now indicate
how the Kryloff-Bogoliuboff theory of quasi-linear systems can be applied to
systems having an external periodic excitation. We shall return to this ques-
tion later in connection with the Mandelstam-Papalexi method based on the the-
ory of Poincaré.

93. EQUATIONS OF THE FIRST APPROXIMATION FOR
A PERIODIC NON-RESONANT EXCITATION

The quasi-linear differential equation for a system with an external

excitation has the form
mi + kx = uf(t,x,z) [93.1]

in which the time ¢ appears explicitly.
We shall consider only the case where f(¢,z,z) can be written in
the form

N
ft e, &) = filz,&) + 3 [f,(2,2)cosy,t + f.,(x, %) siny, ¢ [93.2]
n=0

where f,, f.1» and f,, are certain polynomials in z and z.

In the terminology of electric-circult theory, the motion repre-
sented by Equation [93.2] may be considered a current produced by an electro-
motive force e = uf(t,z,z) applied to a linear impedance Z(jw,) =1njw0-+;25n
It was mentioned in Chapter XIII that in electrical problems x corresponds to
the charge in the capacitor and z to the current.

When u = 0, the system [93.1] becomes a linear one whose solution

is
x = asin(w,t + @)

. (93.3]

= aw,eos (wyt + @)
where w, = Vk/m and ¢ are two constants of integration. When u # 0 but suffi-
ciently small, the expressions [93.3] appear as generating solutions (compare
with the method of Poincaré in Chapter VIII) with which we start the approx-
imation. One may consider these expressions as an approximation of zero order.
Our purpose will be to establish an approximation of the firs¢ order which
will characterize the quasi-linear system with a degree of accuracy of the
order of u®.
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The non-linear term becomes
e = uf[t, asin(w,t + @), awycos(w,t + ¢)] [93.4]

Since the functions f,, f,,, and f,, are polynomials, their Fourier expansions

are of the form

flasiny, aw,cosy) = [gk(a) cosky + h,(a)sin kz/z]

ZN"
kZ0
ZN‘I
k20

falasiny, awjcosy) = [gnl’k(a)coskw + Ry (a) sinky] [93.5]
v
[ (asing, aw,cosy) = Z[gnz’k(a) cosky + h,, . (a)sin k)
k20

Using these expressions and also the expansion [93.2], one can write the non-
linear term [93.4] as

’

e = u [gk(a)cosk(wot + ¢) + h(a)sink(w,t + ¢)] +
k=0

2

N
Z[hnl,k(a) + gn2,k(a’)] Sin[(kwo + yn)t + k¢] +

k=

+
IXTE
o

3
1l
<
<

N’ .
2[-%1,1:(“) - hn2,k(a)] cos [(kwo + y)t + k¢] +

k=

+
o R
M.

3
n
<
<

” .
2[9n1,k(“) + hn2’k(a)] cos [(kw0 — 7t + k¢] +
%

3
n
(=1
I
=

.+.
xR
M

Zw

+ [Py, (@) — 9,5 (@)] sin[(kw, — 7,0t + k] [93.6]

o=
M-

"
o
=
<

n
It 1s noted that the frequencies kw, + 7, and kw, - y, appearing in
these expressions are combination frequencies like those we have previously

encountered.
We shall 1imit our study in this section to systems in which none

of the combination frequencies approaches or is equal to the frequency w,.
In other words
[kw, + yn] # w, and [kwo - yn] * w,
As before, we call this case the non-resonant case. From the form
of Expression [93.6] one ascertains that the only harmonic having the fre-
quency w, 1s the harmonic

e, = ng,(a)cos(wyt + @) + uh (a)sin(wyt + @) (93.7]
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Using this expression together with the second equation [93.3], one

has
e

Ze = Tl = %&[gl(a) - h](a)J] [93°8]

Hence, to the first order, the non-linear element of the system can be re-
placed by the equivalent linear one so that the symbolic equation of the
quasi-linear system becomes

zZ-2,=0 [93.9]
Written explicitly, this equation is
k u .
mp + 5 = gorla@ - hy(a) ) [93.70]

where p = -6 + jw, 6 being the decrement and w the frequency of the equiva-
lent linear system. Substituting this value of p into Equation [93.10], one
has

(=0 + .7"4’)2 + “’02 = [gl(a) - hl(a)j](— 6+ jw) [93.11]

mwya

whence, to the first order, one obtains

0@);  w=w, — =——h(a) [93.12]

6=- 2mw,a

2mw,a

By substituting these values iInto the equations of the first approximation

da _ _ de _
dt Jda and TR w W,
one obtains
de _ _u . d¢ _ _ _u
dt  2mw, 9,(a); dt 2mwya hy(a) [93.13]

By the introduction of the total phkase Y = wyt + ¢, these equations become
ay “

da _ u dy w
dt 0 2mw,a

dt 2muw,

It 1s thus seen that the solution to the first approximation is still of the
form

9,(a); h(a) = w(a) [93.14]

t = asiny [93.15]

where a and ¥ are given by Equations [93.14].

By analogy with the definition of the linear decrement, it is logi-
cal to introduce now a quantity A, the equivalent decrement, defined by the
equation

A =— ——gl(a) (93.16]

aw,
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Since g,(a) is the first coefficient of the Fourier expansion, its explicit
value is

2
1 .
9,(a) = ;ffo(a siny, aw, cos ) cosy dy [93.17]
0
whence )
_ u )
A= — e Offo(asmz/;, aw, cos ) cos Y dy [93.18]
Following the procedure explained in Section 75, one obtains
2r
k] = — 7f‘—&ffo(asinz//, aw,cosy) siny dy [93.19]
0
and to the first order w? = k—%;ki—. The equations of the first approximation

then acquire the familiar form

da by d k + k]
e aea Fmw= i [93.20]

If one differentiates the solution z = a sin y twice, takes into account Equa-
tions [93.20], and substitutes z and z into Equation [93.1], one finds that
the solution z = a sin ¢ satisfies the linearized equation

mi + A& + (k + k)xz = 0 [93.21]

to within a factor of the order of uZ.

It should be noted that in the equation of the first approximation
the dependence of the "forcing function" on time does not appear explicitly.
This 1is due to the fact that, for the formation of these equations, only the
term f,(z,%) of Expansion [93.2] has been retained. This term is expressed
by the equation

T
Sl &) = t]i)mw %J.f(ﬂx,i‘) dr

In other words, the first approximation deals with the average value
of the forcing function with respect to time, and the instantaneous behavior
of that function is felt only in approximations of higher orders.

The rest of the discussion is centered about the linear equation
[93.21]. Thus, for example, the stationary state is reached when

2x
Aay) = — atf):)?r Offo(ot siny, aw cosy) cos Y dy = 0 [93.22]
This corresponds to Equation [46.22] of the theory of Poincaré or to the first
of the "abbreviated equations" [52.9] of the theory of Van der Pol.
The stationary state is stable if (g%ﬂa_a > 0 and unstable if
Self-excitation may develop from rest if A(0) < 04 if, however,
A(0) > 0, no self-excitation takes place.



45

94. FIRST-ORDER SOLUTION OF VAN DER POL'S EQUATION WITH FORCING TERM
It has been shown that the operation of a self-excited thermionic

generator with inductive coupling can be expressed by an equation of the Van
der Pol type, that 1is,
y+y—u@l—-4y=0 [9u.1]
If an alternating electromotive force E = E, sin at of constant frequency is
provided in the grid circult shown in Figure 94,1, the differential equation
[94.1] acquires a "forcing term" and becomes
¥ +y—ul — ¢y = Esinat [94.2]
If we introduce a new variable z, defined by the equation y = z +
+ Usin at, where U = 1——1_';%2-, Equation [94.2] becomes
I+ zx= u[l - (z + Usinat)z][:i: + Uozcosat] [94.3]
in this equation
flt,z,8) =1 — (& + Usinat)z][:i: + Uacosat] [94.4]
Developing the right side of this
equation and collecting terms not hhhh

depending explicitly on ¢, one
has ’

2
folmd) = (1 - 2* - %—)x (94.5]

If we let m= 1 and k = 1 in Equa- L
tion [93.1], then we can take as T
generating solutions z = @ sin ¢
and ¢ = a cos ¢, since w, = 1.
Substituting these solutions into
[94.5] and carrying out the inte- Figure 94.1
gration indicated by [93.18], one
obtains
2 2
- a U
A= - ﬂ(l -7 ?) [94.6]
The equation of the first approximation therefore becomes
da _ | 1 a? Ut y
dt—+2(1 4 2)“ [9%.7]

This equation shows that for U?< 2 there exists a trivial solution a = 0
which, however, is unstable. In fact, for a very small initial departure,
the quantity in parentheses is positive, which indicates that the amplitude
begins to increase. The stationary amplitude a, 1s reached when
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o =a =21 - L [9%.8]

If U2 > 2, there is no self-excitation, and the trivial solution a = 0 is
stable. The value
E2
2 70
vt = 1 — «a?)? 2
is thus a critical threshold separating two zones: 1in one zone, where U® < 2,
the system becomes self-excited; in the other, where U? > 2, the external

periodic excitation with frequency a prevents self-excitation.

95. IMPROVED FIRST APPROXIMATION FOR A NON-RESONANT
EXTERNAL EXCITATION OF A QUASI-LINEAR SYSTEM

Equation [93.6] gives the expression for a non-linear force in terms
of the Fourier coefficlents for different combination harmonics.

Using the terminology of electric-circuit theory, one can say that,
if an electromotive force e¢ = ¢, sin (2t + @) 1s impressed on a linear imped-
ance Z = mjw + j%’ the steady-state current due to this forcing term will be

. 2 .
——-—eﬁ—k—sm(ﬂt + @) = ———?—j—zsm(gt + ¢) = —%COS(.‘H + @)
mjR + == mlw, — 2 mlw; — 2°)
. 7R ‘
Likewise, for e = e, cos (2¢ + ¢), the forced oscillation is
€ — € J8 e, 2 .

—20  cos(Rt + @) = cos(Qt + @) = 0 sin(Qt + @)

k m(Q® — woz) m(Q% — wy,) ¢

mie + o

One obtains the following equations for z by dividing Equation
[93.6] by the linear impedance of the system:

:lt;=asin;//+”—gjl

N’ .
u g.cosky + h, sinky
+ ) +

k 1 - k) w?
N N’ N N
u (gar,e = hpo)cos(ky + y,t) Ll (Gpip + Ppos) cos (ky + v,t)
+ — 2= 2 + = s s +
2m g% ol — klwy + 7,)° sz:‘:o'k:o 0F — (kwg + 7,)°
+ LZZ(g"”‘ AENLUS LR W AL LU
2m 3 T0k=0 — (kwy — 7,)° 2m =, we — (kwy + 7,)
‘u (gnl kT hnZ k) sin (kVI - )’nt)
l .1
2m %kz:‘ we = (kwy — ,)° [95.11]

A similar expression can be written for z. From Expression [95.1)
it follows that resonance occurs whenever one of the divisors becomes either
zero or a small quantity of the first order. Under such circumstances the
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smallness of the numerator due to the factor u is offset by the smallness of
the denominator, so that the resulting term remains finite.

It can also be seen from Expression [95.1] that the dependent vari-
able x(t) consists of three kinds of oscillations, namely:

1. Free or autoperiodic oscillation, a sin ¥ = a sin [w(a)t + ¢].

2. Forced or heteroperiodic oscillation with frequencies y, given by
the terms in which k£ = 0.

3. The spectrum of combination oscillations with frequencies kw(a) % y,.

One could proceed with building approximations of higher orders in
which the divisors would be of the.form wy® - (kwy + bjA; + -+ + b,1,)° and
apply the preceding argument. However, the formation of these approximations
is complicated and adds nothing new to the qualitatlve aspects contained in
the improved first approximation [95.1].

In the following discussion, we prefer to use the terms "auto-
periodic" and "heteroperiodic" instead of "free" and "forced," for reasons
which will appear later.

96. HETEROPERIODIC AND AUTOPERIODIC STATES OF NON-LINEAR SYSTEMS;
ASYNCHRONOUS EXCITATION AND QUENCHING

We shall now consider Equation [95.1] when the autoperiodic oscilla-
tion 1s absent, that is, when ¢ = 0. 1In such a case

g, =h, =0; k=12 ...
Iue = 0 Guae =0 Ry, =05 k=0 k=12"---

This follows from the fact that the numbers g,, -+- for k > 0, which we have
Jjust asserted to be zero, are merely the non-constant terms in the Fouriler
expansions of [93.5]. Now for ¢ = 0 all the expressions on the left side of
these equations reduce to their constant terms. This same fact 1s true of
their Fourier expansions, and hence all coefficiénts of the cosine and sine
terms in these expansions are zero.

If we put ¢,y =4, and h,, , = B,, Expression [95.1] reduces to

N .
u A,cosy,t + B,siny,t u
z = 0 &')‘02 — y;‘ nlo4 EgO(O,O) [96.1]

Hence, for a = 0, only heteroperiodic oscillations exist with externally ap-
plied frequencies »,, ¥,, *** , 7y. In Section 94 it was shown that for

E, \?

U2=(1—_'—a'2—) > 2

the heteroperiodic state is the only one possible.
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Consider the following differential equation encountered in
acousties:
myj + My + ky + 6,y° = E sina;t + E,sin(a,t + B) [96.2]
where m, A,, and k are positive constants. Moreover, A, and 4, are small, so
that we can introduce a small parameter u by writing .
A = uA; 8 = ud [96.3]

In order to make Equation [96.2] of the same form as [93.1], one can introduce
a new variable z defined by the equation

E sina,t E,sin(a,t + B)
= + 1 1 2 2 .
y=7* m(wl — af) . o mwl — al) [96.4]
This change of the variable gives
mi + kz = ,u{[— Ai — )\E1°;1005a;t _ )\Ezazcgs(agt 2-i- ,6’)] _
mw;, — a;) m(w, — a,)
. . .
_ 6[k + Elszmalt2 + E, sm(;!zt +2,8)] (96.5]
m(w, — a;) m(w, — a,)

Here A = uA > 0. Hence, by Equation {93.20], the autoperiodic oscillation
dies out and only the heteroperiodic state is possible. By Equation [96.1]
one obtains the following expression for the heteroperiodic oscillation:

UAE a, cosa,t UAEya, cos(ayt + B) udE* _ [96.6]
mHwl — ) miw? — a))’ 2k[m(w; — o)) )

udE, UOE] cos 2at udE, cos 2(ast + B)
2lc[m(w02 — 0122)]2 2m[m(a;02 - 0112)]2(%2 — 4al) 2m[m(w02 - o))} (wy — 4af

)+

uOE E,cos[(at, — a,)t + B] UOE,E, cos[(a, + a,)t + 8]
mwy — a))w] — a))w; — (o, — a)f] - mMof - e)wf — a)]wg - (a, + a)’]

It 1s seen that the heteroperlodic oscillation consists of harmonics
of the fundamental frequencies a;, and @, and also of the combination frequen-
cles 2a,, 2a,, @, + a,, and a; - a,. The frequency zero (the third and the
fourth terms) also appears in the spectrum.

As another, more complicated example in which both heteroperiodic
and autoperiodic oscillations appear, we shall consider an electron-tube
oscillator acted upon by an extraneous voltage of frequency o in addition to
the feed-back voltage e. The anode current is

i, = f(E, + Fcosat + e) [96.7]
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Let the frequency of the oscillating circuit be w;,. In the first approxima-
tion, the preceding expression becomes

i, = f[E0 + Feosat + acos(wyt + ¢)] [96.8]

where a and ¢ are the amplitude and phase of the autoperiodic oscillation of
the voltage applied to the grid.

In order to apply the method of equivalent linearization, the non-
linear conductor ¢, = f(e,) must be replaced by a linear one ¢, = Se,, where
the equivalent parameter S must be so chosen that the fundamental harmonic of
[96.8] is equal to the harmonic Sa cos (w4t + ¢). By the Principle of Har-
monic Balance, Section 77,

1 2r

S = 2a7r20

o
ff(E0 + FceosT; + a,cosT,)cosT, dr, d7, [96.9]
0

It was shown in Chapter XIII that in the linearized scheme in which the non-
linear conductor 1is replaced by an equivalent linear one,

jo =8 = ju, - §(1 - 3‘%) [96.10]

where w, is the frequency and d, is the decrement of the linear circult closed
on the non-linear conductor linearized by the transconductance S. The quan-
tity §; 1s the critical transconductance, that is, a particular value of the
transconductance S for which the decrement ¢ vanishes and the oscillation be-
comes stationary.

It is apparent that, if the external excitation Fcos at is absent,
the value of S 1s somewhat different from its value in Equation {96.9]. 1In
fact, for an autoperlodic excitation the equivalent transconductance is given
by Equation [83.7], viz., ‘

2r
S(a) = %J‘f(Eo + acos @) cos g do

In order to use this equation, 1t is sufficient to replace E;, by E, + F cos at
and to avefage it again over the period 2w If the autoperiodic frequency w,
is high (for example, radio frequency) and the heteroperiodic frequency a is
low (for example, audio frequency), the equivalent transconductance S(a) giv-
en by Equation [83.7] is a slowly varying function with frequency a. If the
value of S(a) oscillates with frequency a in the neighborhood of the critical
value of self-excitation (autoperiodic frequency) and the amplitude F of the
heteroperiodic frequency is sufficiently large to pass out of the zone of
self-excitation, it 1s apparent that the appearance and disappearance of the
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autoperiodic state will also be periodic with the period T, = %g-of the heter-

operiodic oscillation. The reader will recognize the characteristic behavior
of the so-called superregenerative circuit.

If, however, the heteroperiodic frequency is considerably higher
than the autoperiodic one, its effect will be felt in the virtual modification
of the critical transconductance of the electron tube. Depending on the form
of the characteristic, this effect will sometimes manifest itself in the ap-
pearance of an autoperiodic self-excitation and sometimes in the extinction of
an existing autoperiodic oscillation. These phenomena are sometimes referred
to as asynchronous ercitation or asynchronous gquenching of an autoperiodic os-
cillation by a heteroperiodic one (5). The conditions for such asynchronous
action are easlly established by following the procedure indicated by Equation
[96.9] in which one integration, say dT,, is carried out with respect to the
heteroperiodic period and the other dr, with respect to the autoperiodic one.

As an example (5), consider an electron-tube oscillator with a non-
linear characteristic given by the polynomial

i, = f(2) = az + Bz® + yz® + éz' + €2° [96.11]

It has been shown that this expression approximates sufficiently
well both the soft and the hard characteristies. For a soft characteristic,
it is sufficient to put é = ¢ = 0, whereas for a hard one, the full polyno-
mial should be used. Assume that the grid voltage x is of the form

* = acosg + bcosy [96.12]

where @ and ¢ are the autoperiodic variables and & and ¥ the heteroperiodic
ones. Replacing z in Expression [96.11] by its value [96.12] and carrying
out the integrations indicated by [96.9], viz.,

2r 2x

S(a,d) = Tlnszf(acosqﬁ + bcosy) cosd dep dy [96.13]

00
one obtains the following expression

S(a,b) = o + %yaz + %'yb2 +.§ea4 + 15

If the heteroperiodic excitation is absent, that is, if & = o,

ea’b? + 15

1 3 ebt ‘[96.14]

S(a,0) = & +—iiya2+gea4 [96.15]

which 1is the expression for the transconductance S of an autoperiodic state.
More specifically, if the characteristic i1s soft, that is, if vy < 0 and
d = € = 0, the stationary condition is

S(ay,0) = a — %|y|a02 =0 [96.16]
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which gives

— /4 a
ao—‘/g o [96.17]

which was obtained previously by the method of Poincaré, see Section 54.*
) The condition for soft self-excitation in the absence of a hetero-
periodic frequency is

$(0,0) = a > S(a,0) [96.18]
If, however, the heteroperiodic frequency is present, that is, & # 0, the
initial value of the transconductance is

S(0,6) = a + —2—762 [96.19]

Since y < 0, S(0,%) < §(0,0), which means that the presence of the hetero-
periodic frequency may prevent the occurrence of self-excitation. Therefore
one concludes that, for a normally soft characteristic, asynchronous quench-
ing of the autoperiodlc frequency by the heteroperiodic one occurs, a fact
which was mentioned at the end of Section 94.

For a hard characteristic (e < 0 and &, B8, ¥, and d > 0) in the
absence of the heteroperiodic excitation, the transconductance is

S(a,0) = a + %yaz - %|e|a“ [96.20]

This expression considered as a function of a? is a maximum when

2 3y

a” = 7

3

The maximum value of S{e,0) is then

- 9 »
S (a,0) = & +-40 Te] [96.21]

max

One can obtain asynchronous self-excitation (4 + 0) if

_ _Be 15 . 9
$(0,0) — S_, . (a,0) = zyb + s b + 0 >0 [96.22]
that 1is, 1if
3 s 15y e, 9 7 |
2'yb > 3 le]o* + 10 Tl [96.23]

This inequality can be fulfilled if the quantity &% lies in the interval

1 v 2. 3 ¥
5 |€| < b° <L 5 |6| [96.24]

* It should be observed that the notation here differs from that of Section 54.
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The subject of asynchronous action on a self-excited system can be
summarized as follows:

a. If the characteristic is soft, the heteroperiodic frequency
may result only in quenching the autoperiodic oscillation and not in
causing its appearance.

b. If the characteristic is hard, the heteroperiodic frequency
may cause self-excitation of the autoperiodic oscillation provided
the amplitude of the heteroperiodic frequency lies in the interval
indicated by the inequalities [96.24].

¢. In all cases, the heteroperiodic action manifests itself in
a virtual modification of the transconductance by which the condi-
tions of self-excitation are influenced one way or the other accord-
ing to the form of the non-linear characteristic.



CHAPTER XVI

NON-LINEAR EXTERNAL RESONANCE

97. EQUATIONS OF THE FIRST APPROXIMATION FOR AN
EXTERNALLY EXCITED RESONANT SYSTEM

We shall now investigate the conditions under which certain har-
monics in the combination-frequency spectrum become large compared to others
when a quasi-linear dynamical system 1s exclted by an external heteroperiodic
frequency. We shall call this external resomance in contrast to internal res-
onance, which characterized a similar system without an external excitation.

For simplicity, we confine our attention to systems having one de-
gree of freedom and fractional-order resonance. In such systems

o (97.1]

»|<3

(4)0=

where r and 8 are relatively prime. Unless otherwise stated we also assume
that ¢ > 1, because ¢ = 1 corresponds essentially to ordinary resonance. 1In
the "neighborhood" of resonance

a + uQ (97.2]

€
]
wlx

where g is small.

Let us consider an electron-tube oscillator whose non-linear ele-
ment, the electron tube, has a characteristic 7, = f(e). Let the autoperiodic
oscillation be

e = acos(w0t+¢)=acos(§at+¢)
The anode current ¢, is given in terms of the grid voltage by the expression
z'a=f[Eo+Fcosat+acos(£at+¢):! [97.31]

In this expression the quantity a i1s the amplitude of the autoperiodic oscil-
lation,-ga is its frequency, and F and o are the corresponding quantities for
the heteroperiodic oscillation introduced in the grid circuit, for instance, .
through an inductive coupling.

We begin by linearizing the.non-linear element of the system by
writing

i, = Se [97.4]

where S is the equivalent transconductance, a function of the amplitude a of
the autoperiodic oscillation. For simplicity we will write S instead of S(a).

It is recalled, see Section 77, that, according to the Principle of
Harmonic Balance, the fundamental harmonic of the non-linear periodic quantity
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[97.3] 1s equal to the linearized oscillation [97.4]. By a Fourier series we
obtain the following expression for this harmonic:

27ms

% O'f[E‘O + Fcos at + acos({- aT + ¢3)] [cos(siar + ¢) cos (—gat + ¢) +
0

+ sin(% aT + ¢) sin(siat + ¢)]d7- [97.5]
This expression can be written in the form

S,acos(siat + ¢) — S, a sin (%at + ¢> ’ [97.6)

where
2r

S, = S,(a,¢) = ;lgff[Eo + Fcos(s-r - %tﬁ) + acos rr}cosrv- dr
0

(97.71]
1 f s
S; = S;(a,¢) = — n_—aoff[EU +Fcos(s7- — —;¢) + acosr‘szin rrdT
Equation [97.6] can be written as
Sacos(%at-&-¢)=(Sr+jS,~)acos(siat+¢) [97.8]

It 1s seen that in a resonant system the transconductance S is a complex quan-
tity ’
S =S8, +38; [97.9]

whereas 1in a non-resonant system it is real. Moreover, the formal procedure
remains the same as in Section 89, the only difference being that instead of
impedances we are now dealing with admittances since transconductance is an
admittance. Using Equation [96.10] for the fundamental harmonic [97.8) and
separating the real and the imaginary parts, one gets

S

w=w,t+ 055 0= 41— [97.10]
0

0
where S,, as before, designates the critical value of the transconductance S.
If we put-§¢1t+-¢ = ¥, the equations of the first approximation become

S

da Sy
S,

—=—60(1—-—)a; —=w0—§a+60

; (97.11]

The variables in these equations cannot be separated since both S, and S; are
now functions of ¢ and ¢. On the other hand, since these equations are of the
type investigated by Polncaré, we can assert that in the (a,$)-plane the only
stationary motions are either positions of equilibrium, that is, singular
points of the system [97.11], or stationary motions of the limit-cycle type.



55

L]

The first case 1s characterized by the approach of e and ¢ to cer-

tain fixed values a, and ¢, when ¢ > . Thus we have
_ Sr(ao,¢o)] — . _r Silag, o) _ ,, T _

The oscillation ultimately reaches a frequency w which is exactly equal to sﬁa;
this means that the frequencies w and a become "locked" in a certain rational
relation. We may call this synchronization of the autoperiodic oscillation
with the heteroperiodic one. Thus there exists one single frequency, and the
stationary oscillation 1is

aocos(wt + ¢)= aocos(gat + ¢)

In the second case both a(t¢) and ¢(¢) are periodic and have the same
period as the autoperiodic solution so that the ultimate oscillation consists
of the two frequencies. In other words, there are "beats" of autoperiodic and
heteroperiodic frequencies. ‘We shall conslder this subject in greater detall
in Chapter XVIII.

It is possible to show¥* that, when r > and s> ~, S; > 0 and S,
approaches the value given by Equation [96.9], so that for large values of r
and s the resonant case degenerates into the non-resonant one, which has al-
ready been investigated. Hence, the typical features of fractional-order
resonance appear when r and s are relatively small integers.

Let us consider the following example. We assume that the function
f(E, + u) can be approximated by a polynomial of the third degree:

F(By+ w) = f(E) + Sju+ S, o — Su° [97.13]

where S;, S,, and S; are positive. Assume further that r = 1 and s = 2, which
gives w, = a/2. Placing u = Fcosat + a cos (%at+ ¢) in [97.13], we obtain

3 1 3 1 .
Sr=Sl+'2_SsF2 +552FCOS 2¢ —ZS30,2; S; =—ESZFSln2¢ [97.14]
Equations [97.11] become
da _ & _ _3 2 1 _ 83,83 s
T S, (S1 S, 5 SgF* + 5 S2Fc082¢)a 15, a

J 5 S.F [97.151]
GF = w—g - g sin2e
The second equation [97.15] admits separation of variables and can be inte-

grated. Putting

# The proof of this proposition can be found in the Kryloff-Bogoliuboff text "Introduction to Non-
Linear Mechanics," Reference (1), pages 270 and 271.
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60S, F _
28,
one has two cases: Case 1, Aw< A and Case 2, Aw > A.
In Case 1 it is apparent that ¢(¢),_ , > @,, Where ¢, 1s given by
the expression

Aw=,w0—%' and A

25,49) [97.16]

3 i —1 —
29, sin (6052F
One can select for 2¢, the principal determination, that is, sin 2¢, > 0;
cos 2¢, > 0. Let us consider the asymptotic behavior of the solution of the
first equation [97.15] as ¢ > ¢,. If, for brevity, we put

S(g g _3¢gpz 1 — 4 S0e _
SO(S1 S 5 S, F° + 2 S, F cos 2¢0) = A; 2 SOS3 =B
the first equation [97.15] is
da _ _ 3
T Aa — Ba [97.17]

When A< 0, and since a is always positive, the derivative da/d¢ is always
negative and hence a cannot tend to any limit other than zero. Thus a = 0 is
the only stable stationary amplitude. If, however, A > 0, one finds that the
point @ = 0 is unstable. The stationary autoperiodic oscillation, which can
be shown to be stable, see Section 65, is then - .

4 3 1
a=a, = ‘/ZS';(SI—SO_ES3F2+ES2FCOS 2¢0) [97.18]

Since ¢ > @, when t > o, we conclude that there will be a synchronous auto-
periodic oscillation.
In Case 2, when Aw > A, the second equation [97.15] gives

¢ - de¢ _ d¢ A 3
Aw — Asin2¢ x . = 2w (1 * 7o sm2¢) = dt [97.19]
Aw(l — Esm2¢)

Integrating this expression, one obtains
A ‘
¢—¢0—2—A—acos2¢— Awt

that is,

A
¢ = Awt + ¢, + mcos2¢

where ¢, 1s an arbitrary constant. In view of the smallness of A this can be

written as

A N
¢ = (Adwt + @) + mcosZ(Awt + @) [97.20]

Substituting this value of ¢ into the first equation [97.15], one obtains a
differential equation with periodic coefficients.



57

It is noted that this equation admits a trivial solution a = O,
which expresses the condition of a heteroperiodic state. The stability of
this solution depends on the sign of the expression

S, = S, — SS,F + 28,F 528

where cos 2¢ is the average of cos 2¢ per period, that is,

7
_— 1
c0s2¢ = —T—!cos 26 dt [97.21]
d r dt 1 cos 2¢
Ofc052¢dt=ofcos2¢d¢ = wa—)\m 5% d(2¢)
_ fd(1 — k®siny) 1 2 =0 —
h 2Awk20f 1 — k¥siny  24wk?® log (1 — k"u) ueo 0

thus cos 2¢ = 0, and the preceding expression becomes
S, -8, - 35, Ft=c¢C [97.22]
1 0 2 3 .

If C < 0, the first equation [97.13] shows that the heteroperiodic
state a = 0 is stable; if, however, C > 0, the heteroperiodic state is un-
stable and autoperiodic excitation sets in.

98. FRACTIONAL-ORDER RESONANCE

We shall consider Equations [97.11] again in the more general case
of fractional-order resonance. It was shown that a trivial solution a = 0
exists which characterizes the heteroperiodic state. We will now investigate
the stability of the solution a = 0; for that purpose we develop the inte-
grands appearing in the functions S, and §; in terms of the small quantity e,
around the point E, + F cos (st - %¢) in Equations [97.7]. This gives the
first terms of Taylor's expansion for these functions, namely:

L ¥ s ,
S, = ;Jfa[EO + Fcos(s‘r - 7¢)} cos“rr dT
[98.1]

2r
1 . S .
S, = o Offa |:E0 + Fcos (sr " ¢)] sin2rr dt

With 7= ¢ + %, these expressions reduce to

%
1
= —270ffa[E'O + Feosst][1 + cos(2rt + 2¢)]dt

r

2x

1 .
.S = - 2—ﬂoffa[EO + Fecosst]sin(2rt + 2¢) dt

13
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because of the periodicity of the integrands. Since

2
ffa(E'O + Fcosst)sin2rt dt = 0
3 ,

these relations reduce to

2r
S, = Ql;bffa[Eo + Feosst][1 + cos2rt cos2<{5] dt

2n

S, = - %bffa[Eo + Fcosst] cos 27t sin2¢ dt
If we set
iﬁf[E + Fcosst]dt = N,
2 | Jal® 0
and [98.2]

2
%Off;[Eo + Fcos st] cos2rt dt = N,

Equations [98.1] become
S, = Ny + N, cos2¢

. [98.3]
S; = — N;sin2¢
With these values for S, and S,;, Equations [97.11] become
da _ Ny 0, N,
i JO(SO l)a + A a cos 2¢
d¢ N [56.4]
- _r _ GV, .
T (‘”o p a) S, sin 2¢

The nature of the solutions of these equations establishes the conditions for
the stability or instability of the autbperiodic oscillation. If the only
stable autoperiodic solution is a = 0, only heteroperiodic oscillations are
possible. Equations [98.4] with periodic ceefficients can be reduced to a
system with constant coefficients by introducing the new variables u = a cos )]
and v = @ sin ¢. With these new variables we have

% = %cosq& - asinqﬁfil—;ZS and 3—;) = %sinqﬁ + acosqzsg—‘;S
Substituting in these equations %% and-%? from Equations [98.4] and rearrang-
ing, one gets

% = 60(N°S;ONI - 1)u - ("'o - sﬁa)v = Au — Bv
[98.5]
g—: = (wo —a)u + 60(N°‘S-,; N l)v = Bu + Cv
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These equations have non-trivial solutions if
(—p+ A) - B
-+ B (-p+0C)

=0 [98.6]

Hence the solution ¢ = 0 1s stable if the roots p, and p, of [98.6] have nega-
tive real parts. Written explig¢ltly, these roots are

Dy, = GO(TSN—E - ) + ‘/(6015\,’—;)2 - (“’o — ?ro:)2 [98.7]

According to whether the quantity under the radical is positive or
negative, the roots will be real or conjugate complex. Replacing N, by its
value [98.2] gives

2n
_r 9
wo = Tof > 27S, Offa(Eo + FcossT) cos2rT dT [98.81]
r d &
_r 0
w, — Sl < 37S, Offa(Eo + Fcosst) cos2rT dr [98.9]

In Equation [98.8], the roots are conjugate complex, and self-excitation is
possible if N, > §,, that 1is, if

2
1
EJ;;(EO + Feost)dr > S, (98.10]

In Equation [98.9], the roots are real, and self-excltation is possible when
at least one root is positive. One finds that this condition is

I L
(Ny = Sp)* + N, > [w"—doﬁf—} Sy [98.11]

with N, > S,.
If one takes a still stronger inequality by drdpping the term
(N, - So)2 in [98.11], one obtains a sufficlent condition for self-excitation:
3w — &, s ’ Af_xl
(s |4, 5 ) < @< Ew + |8 5 ) [98.12]

This means that the autoperlodic state always sets in when the external fre-
quency @ lies in the interval defined by [98.12], which requires that

2x ‘
N, =%ffa(Eo+Fcossr)cos277dr 0 [98.13]
0 «

This condition is fulfilled only when 27/8 = k, where k 1s an integer. Since
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systems where r/s 1s an integer have been eliminated because they do not pos-
sess subharmonic solutions, one can assert that the condition for the exist-
erice of self-excitation of the autoperiodic state excited by the extraneous
frequency a is

=___29;’1 [98.14]

|3

where ¢ = 0, 1, 2, -~ .
If the amplitude F' of the externally applied force 1s very. small,
one can further simplify the expression [98.13] and write

o
N, = ————Ffa;;EO)Jcos sT cos 2rT dT [98.15]

where f,-(E,) designates the derivative of f, with respect to F taken at the
point E;. From this expression it follows that

N, =0 for s #2r
[98.16]
Ff - (E,) for
2
which means that in the zone of self-excitation defined by [98.12] only funda-

mental fractional resonance of the order one-half can exist, in which case

N, = s = 2r

I-3 w=% (98.17]

This fact was noted by Lord Rayleigh in his experiments with oscillating sys-
tems. He observed that, if one of the parameters (L,m) or (1/C,k), in the
notation of Chapter XIII, oscillates with a frequency twice as large as the
frequency of the system, the system will oscillate with half the frequency of
the parameter.

99. PARAMETRIC EXCITATION
Parametric excitation of a system is defined as the condition of

self-excitation caused by a periodic variation of a parameter of the system.
Although this subject 1s discussed in Chapter XIX from a different point of
view, it 1s preferable to give an outline of the phenomenon here in order not
to interrupt the argument of Kryloff and Bogoliuboff which we are following.

Let us consider the circuit shown in Figure 99.1. It consists of
a very small resistance R, a constant inductance L, a non-linear inductance
L,(7) containing a saturated iron core, and a variable capacitor C arranged
to produce a fluctuating capacity with frequency o« around its average value
Cy according to the law

C = Cy,(1 + psinat)
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where pC, 1s the amplitude of the fluctuating }?
capacity and p << 1. If we assume that R 1s C
very small and that L,(7) << L, the problem
is clearly within the scope of the quasi- L L
linear theory. Let us also assume that the
circuit is tuned so that
R
w =g 2 (99.1]
0 VEEE 2 Figure 99.1

This condition will result in fractional-
order resonance of the order one-half, as was just shown, and the steady-state

current will be of the form

;= asin(%t + ¢) [99.2]

In this problem we have, in addition to the constant parameters R and L, one

periodically varying parameter C = Cy(1 + p sin at) and one non-linear param-

eter L,(¢). We can apply the Principle of Equivalent Linearization to the
non-linear parameter L; and write

2r
L@ = 2 [L'(asing)sing dg (99.3]
0

It is recalled that the coefficient of
inductance L 1s defined in all cases by
the relation ¢ = Li, where ¢ 1s the
flux linkages of the coil carrying the
current 7. When the coll 1is wound on
an iron core, the function ¢{<) has the
° ! appearance shown in Figure 99.2, when
Figure 99.2 we neglect the effect of hysteresis and
the inflection point near the origin in order to simplify the argument. It is
apparent from the above definition that the coefficlent of inductance L 1s a

monotonically decreasing function of 7 in the presence of magnetle saturation.
—At

Approximating the function ¢(:) by the expression ¢(7) = ¢,(1 - ¢"°), one has
the following expression for L(7):
. }\2. )\3 .2
L) = g(r—Fi+ i =) [99.4]
It 1s seen from this expression that
dL(4) A A
di ¢0( 7 T3 )

is negative. The argument is obviously valid for any polnt around which the
expansion is made. It 1s also apparent that the term ¢,A = L, represents the
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constant coefficient of inductance of the coll without an iron core; the re-
mainlng terms ¢0 2 ; Olj;— .-+ are varlable terms resulting from the non-
linearity of the function ¢(<). The variable parameter C = C,(1 + p sin at)

accounts for the electromotive force

1 3 ' 1
€= Co(1 + psinat) bfzdt - C,(1 + psmat) asm( t+ ¢)

acos(gt +¢)
- < [99.5]
COE(I + psinat)

By the Principle of Harmonic Balance, Section 77, the fundamental harmonic of
this expression must be equal to the voltage drop of the current ¢, given by
[99.2], across the impedance Z, = r, + jx,, where Z, 1s the equivalent imped-
ance of the circuit.

Since the Fourier coefficients of the first harmonic @, CO8 (2t + @)
+ b, sin (2t + ¢) of the perlodic function [99.4] are

2% + 2r .
a, = 1 SCOS(O ¢) cos(6 + @¢)do; b, = L ZCOS(O + 4) sin(8 + ¢)dé
. 005(1 + psin26) s Co5 (1 + p sin 26)
one finds, after a few elementary transformations, the following values for r,
and z,:
2r .
1 sin(8 + @) cos(6 + @) p
= - d6 = — ——cos?2
" e Of Cy(T + psin26) T
N (99.6]
2
cos“(8 + @) 2 [ 1 ]
e = 22‘_(! Co(1 + psin26) ~ «C, 1+ 2 psin2¢

It is thus seen that a variable capacity results in the appearance of a vari-
able impedance Z, characterized by components r, and z, given by [99.6]. The
circult acts as 1f it had an equivalent capacity

Cc, = .—g—°~ ~ (1 - £ sin2g) [99.7)
1+ 5 sin2g 2

We have seen that the equivalent system consists of an inductance L + L,, a
resistance R - &%; cos 2¢, and a capacity Cy(1 + %5 L sin 2¢). The equivalent
parameters thus appear as functions of the phase angle ¢. The decrement and

frequency of the equlvalent system are



R — P cos2¢

aC R PW

= 0 ~ — . 7T
s 2(L + L) 5L ~ 4 °®2%¢
(99.8]
1 [ Li(a) ]
= e 1 - + —sin2
V(L + L,)C 0 2L 4 ¢
whence the equations of the flrst approximation are
da _ (@p _ By, 2, L@ oy we
i ( 4 cos 2¢ 2L)a, y —( N oL @ 2)+ . sin2¢ [99.9]
Ly(a)

Expanding the function =37 Wo» which appears in the second equation, in a
Taylor's series around the value a = 0, we get

d¢ _ L)« wep @
o = (‘*’0 TR 2) + i sin 2¢ 5L L,(0)
If we let
4 ’ 2L ’ 0 2L 0 2
Equations [99.9] become
g—(: = (mcos2¢ — n)a; Z? p + msin2¢ — L 1 (0) [99.10]

Let us examine the behavior of the system when a = 0. The singular
points occur when '
msin2¢ + p = 0 ‘ [99.11]

Let 2¢, be one of the roots, which we will assume to be in the first quadrant
(sin 2¢, > 0; cos 2¢, > 0). Applying the Poincaré-Liapounoff criteria of sta-
bility and designating the small perturbation of the amplitude by ¢ and the
perturbation in the phase angle around ¢, by n, we have the following varia-
tional equations '

% = (mcos2¢; — n)¢
d L(0) 9912
Zi—% = (— éL )f + (2m cos2¢,)n — 2mcos 28, - @,

The last constant term in the second equation clearly does not have any effect
on stability and amounts to a shift of the origin in the (¢,n)-plane. The
characteristic equation of the system [99.12] is then

S% — (3mcos2¢, — n)S + 2mcos 28 (mcos24, — n) = 0 [99.13]

For self-excitation it is necessary that the free term as well as the coeffi-
cient of S be positive. In this case the singularity is either an unstable
nodal point or an unstable focal point. Since we have assumed that 24, is

.
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in the first quadrant, these conditions require that

cos 28, > —
m

[99.14]

n

cos 2¢, > 3

The first inequality is stronger than the second and should be used. On the
other hand, for real values of the argument, one must have

<1 (99.15]

This merely imposes the additional condition that the index of modulation p
should be below a certain critical value given by [99.15]. From the first
inequality [99.14] and the condition [99.11] we have

p? = m?sin®2¢, = m?(1 — cos®2¢,)

that is,
m?cos®2¢, = m? — p?
whence
pP 4+ n? < m?
Substituting the values of m, n, and p, we obtain the condition of self-
excitation which was derived by Kryloff and Bogoliuboff':

2 2 2
Self-excitation does not occur if the sign of this inequality 1is
reversed. The stationary condition is obtained when da/dt = dg/dt = 0 in
Equations [99.9]. If we designate the stationary amplitude by a, and the\

phase angle by ¢,, we get

2R
0082¢1 = m
From the second equation [99.9] we have
- L R
La) = L(2 2 4 2sin2g,) [99.17]

. 0

This equation gives the amplitude @, of the stationary oscillation since 26,
1s known and since the function L,(a) 1s given by Equation [99.3].

For the stability of a stationary state one can again apply the
Poincaré-Liapounoff criteria, see Chapter III, to the differential equations
[99.9] by expanding the functions cos 24, sin 2¢, and L,(e) in a Taylor series
around fixed values ¢; and @, and by introducing the perturbation variables ¢
and 7 given by equations ¢ = ¢, + ¢ and ¢ = a, + 7. Proceeding in this man-
ner, one obtains the following variational equations:
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% = n(mcos2¢, — n) + ¢(— 2ma, sin2¢,)
J [99.18]
Ei— = n[- qu'(al)] + £(2mcos2¢,)
where
Y B @
m= Ty "Top YT e

It is to be noted that Ll’(al) is negative, since the non-linear inductance
decreases when a, increases. The characteristic equation of the system
[99.13] 1s . :

A2 — (3mcos2¢; — n)A + {(m cos 2¢; — n)2meos2¢; + 2mS sin2¢1] =0
where S = a,¢|L,’ (a,)| > 0. Conditions for a stable stationary solution are

clearly
3meos2¢, — n < 0 and mcos®2¢, — ncos2¢; + Ssin2¢, > 0 [99.19]

From the first condition cos 2¢, <-§%¥ From the second
cos2¢,(mcos 2¢, — n) > — Ssin2¢,;

If the angle 2¢, is in the first quadrant (sin 2¢; > 0; cos 2¢, > 0), the pre-
ceding inequality can be replaced by a stronger one

cos 2¢;(m cos2¢;, — n) > 0 [99.20]
whence

cos 2¢; > 1
m

Comparing this with the previous one, namely, cos 2¢1'<'%%# we see that these
two conditions are not consistent. This means that a stable stationary solu-
tion cannot exist when 2¢, is in the interval 0 < 2¢, < %

If one now consliders the 1nterva1-g < 2¢,< m that is, cos 2¢, < 0,
sin 2¢, > 0, 1t 1is observed that both conditions, namely, 3m cos 2¢;, - n <O
and m cos 2¢, - n < 0, are fulfilled. The argument can easily be carried out
for the remaining two quadrants. This means that stable stationary solutions

may exist for certain definite ranges of the phase angle.

100. STABILITY OF NON-LINEAR EXTERNAL RESONANCE; JUMPS

We shall now investigate the so-called jump phenomenon observed in
non-linear systems acted upon by an external periodic excitation. We will
consider the usual Quasi-linear equation

m% + ke = uflat,z,z) [100.1]

where f(at,z,z) is a non-linear periodie function of ¢ with perilod %f. In
the neighborhood of external resonance we have the relation
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w, = —a + uQ [100.2]

where w, =V§L 1s the undamped frequency and r and s are relatively prime inte-
gers. The term u@Q is a small quantity of the first order. The mechanical
interpretation of Equation [100.1] is obvious. We can apply the method of
equivalent linearization, Chapter XII, and for this purpose we seek a solu-
tion of the form

x = asin(gat + ¢) , [100.3]
According to this method, the non-linear exciting force
F = uf(at,z,z) [100.4]
is to be replaced by the equivalent linear 6ne
F=—-1Fkx— Mz [100.5]

The equivalent parameters k, and A, are obtained by equating thé fundamental
harmonic of the expression )

. . r r r
F = uf(at,z,z) = ,uf[ott, asm(;at + ¢), a;acos(—s—at + ¢)] [100.6]
to the linearized terms
. . r r r
F=—-kr—-A2=—ka sm(gat + ¢) - Ala;a cos(;—ozt + ¢) [100.7]

The equivalent parameters k; and A, are given by the Fourier coefficients of
the first harmonic, namely,

2r

k, = — %Off(s-r - %QS, asinrT, a%aéosrr)sinrr dr
[100.8]
2x
A = — %(;%)Jf(sr - %q&, a sin rT, a%acosrr) cosrrdr
In view of Equation [100.2] these equations can be written as
u 2r s
k, = — Eoff(s-r - ;q&, asinrT, aw,cos rr) sinrrdr
[100.9]
2
A= - K f(s-r - i¢, asinrT, aw,cos r'r) cos rT dr
Twa 5\ r
The parameters of the equivalent linearized system are .
_ A YL ﬁ
6=k w=|/ft s w1+ 2k) [100.10]
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and the equations of the first approximation appear in the form

da _ _ A de _

"o w — T oy
T o & ar = ¢ ;o= So:+w02k [100.11]

Replacing in these equations k, and A, by their values in [100.9], one obtains
two differential equations of the first order sufficient to determine the two

quantities a and é.
As an example of the application of these results, we will consider
a rod of length ! on which is impressed an axial periodic force F = H sin at.
The partial differential equation for the transverse vibrations of
the rod 1is
EIQ4—y+—y-/—4-92l +Hsinozta—2y =0 [100.12]
ox! g Ot? ox?

where y 1s the lateral deflection,
EI is the rigidity of the rod,
y 1is the weight of the rod per unit volume,
A i1s-the cross-sectional area of the rod, and
g 1s the force of gravity, 32.2 feet per second squared.

Assuming as boundary conditions
y(0) = y(I) = y,,(0) =y, (1) =0 [100.13]

and seeking a solution of the form

y = z(t)ﬁnnH% [100.14]

one finds, upon the substitution of [100.14] into [100.12], the following dif-
ferential equation

4 2
YA .. (.  UH . .
Tz + EI 14(1 msmozt)z =0 [100.15]
If we let
2 _ E'I7r4g' _ Elnz‘ _ H
“=Sat feTTE PTE,

where w, is the fundamental frequency of the transverse oscillation of the
rod and F,, is the critical Euler's load, Equation [100.15] becomes

Z + wy(l — psinat)z =0 [100.16]
We are looking for a subharmonic oscillation of the order one-half, when

w, ~ /2. The solution is then of the form

7 = asin(%t + ¢) | [100.17]
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where a and ¢ satisfy the equations of the first approximation, viz.,

g—? = %paw0 cos 2¢
[100.18]
d 1 .
ﬁ = wg - % - prosm2¢

Comparing these equations with Equations [99.9] of the circuilt excited by a
periodically varying capacity, we note that they appear as a particular case
of the latter, namely, the case when L,(a) = 0 and R = 0. We can therefore
use the condition of self-excitation [99.16], which gives here

-1

W,

L4

<2

(100.19]

Let us now consider fundamental non-linear resonance, that is,
r = s. The non-linear function appearing in Equation [100.1] i1s of the form

uflat,z,z) = — f(x,z) + E sinat [100.20]
We have w, = a. The quasi-linear equatlon then becomes
mx + kx + f(z,2) = E sinat [100.21]
We are seeking a solution of the form
z = asin(at + @) ' [100.22]

The linearized equations of the first approximation are
[100.23]

where the equivalent parameters A; and k; are given by the equations

2r
A= 1 j[f(a sinT, awycos ) — Esin(r — @)] cosT dr
Tawy
[100.24]
2r
1 . . .
ky = R—Of[f(asm'r, awycos 7) — Esin(r — ¢)] sinT dr
If we put
| 7
A, = ff'(a sinT, aw,cosT) cos T dr
Taw,
[100.25]

2%
1 . .

k, =k + ——ff(a sinT, aw,cosT) sinTdT
ma _
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it is noted that the coefficients A.(a) and k.(a) correspond to the absence
of the external periodic excitation E sin «at. In view of Equations [100.24]
we can write

Ay A E . A E E .
ks S 4 > —& 4+ = + — 1 .26
2m  2m * Bmaw, sin @ 2m 2mac sing =, 2maa sing [100.26]
where 4, =§)i7-;.
Similarly,
‘/’C_+_’f_1_ c L(kth ey ke 2 E
m @« = 2oz( m a) B Zoz(m « ma COS¢)
= Lz a2 E
= 2a(we - o - %—cos¢) [100.27]

where w, = Vk/m. The quantities 6, and w, are the equivalent parameters for
the non-linear oscillations of the system in the absence of an external peri-

odiec force.
Substituting these values of A, and JA%EL in Equations [100.23],
one obtains the following expressions of the first approximation:

da .
T da — ome sin @
” [100.28]
Wi - E
20zdt = w, o o cos @
The stationary amplitude a¢ is obtained from these equations:
— Esing = 2maad,
[100.29]
Ecos¢ = ma(wf — b))
whence
a E [100.30]

B mV(w? — o)? + 467’

It is observed that the stationary amplitude is given to the first
order of approximation by exactly the same relation which gives the forced
amplitude of a linear system, except that the equivalent parameters are to
be used instead of the constant linear parameters.

Although these results, which were derived from the eqﬁations of
the first approximation at a glance, do not seem to yield anything new, it
will be shown now that the important difference between linear resonance and
non-linear resonance lles in the conditions of stability. More specifically,
it will be shown that, whereas the linear oscillation is stable throughout
the whole neighborhood around the point of resonance, the non-linear oscilla-
tion is stable only in certain regions.
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If we set

R(a,¢) = — -f; sing — 2aad,

yla,¢) = (weé - a®a - Ecosqs
m

Equations [100.28] become
da

20‘3? = R(a, o)
2aa-§—? = yYla,o)

The stationary state is given by the equations
R(a,8) = 0; ¥(a,8) =0

[100.31]

[100.32]

(100.33]

In order to investigate the stabllity of the stationary state we must form
variational equations. If we designate the perturbations in a and ¢ by da

and d¢, respectively, the variational equatlons are

déa

20!717 = Rada + R¢d¢
dop

20!GW = Y, da + ¢’¢6¢

[100.34]

The characteristic equation, see Chapter III, of the system [100.34] is

aS® — (aR, + ¥,)S + (R, ¥, — Ry¥,) = 0
The conditlions for stability are clearly
aR, + ¥, <0; Ry, — Ry, >0
Using Equations [100.29] and [100.31], one has

&(as,) d(a’s,)
aR, + ¢, = — 2ca 3a 2a08, = — 2« 90
On the other hand, we have
2 2x
2 a” A ac 1
2 6 = —f = — — i
aa’d, - — anf(a sinT, aw,cosT) cosT dT

Let us consider the quantity

2r

awoff(a sinT, awycosT) cosT dT
0

W(a)

2

ad

onf[a sin(wyt + @), awycos(wet + @)]aw,cos(wyt + @) dt
0

Y
2m

[100.35]

[100.36]

[100.37]

[100.38]

[100.39]
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It 1s apparent from this expression that the quantity W(a) represents the av-
erage power dissipated by the non-linear force f(z,z) during the oscillation
r = a sin (wyt + ¢). Hence, for the usual law of friction, W(a) increases
with a so that W,(a) > 0. In this case the first condition [100.36] is always
fulfilled, as follows from Equation [100.38] and from the condition W,(a) > 0.

Hence the stablility of the stationary state depends on the fulfill-
ment of the second condition [100.36].

Differentiating the functions R(a,¢) and y(a,$) with respect to «,

we have
da dé _ _
R“da -F.R¢da = R,
da ¢ _ _
Voda T Yoda =  Va
whence
Ry — ¥R, = YRy — R Y, [100.40]
From Equation [100.31] we have
p__E _ _E . 3
s = — Ecosqﬁ; R, = — 2a6,; Y, = Esmq&, Y, = — 2aa [100.47]

which gives
v.R, — Ry, = 2a£(ozcos¢ + 4, sing)
atte a”e m e
From Equations [100.29]
%(a cosg + 4,sing) = alw’ — a’)a — 208 a

hence
v,R, — R, = 2aa’[(w} — ) — 26]]

so that
(R,¥y, — ¥,R )—g = 2aw2[(w2 - af) — 262]
a¥e atte do € e

The second condition [100.36] can be written in the form

da . 2 O 2 2
dt>01f w, > o + 20,

€

[100.42]

L ;
Z—;‘f<0 if w’< o+ 28}

Since the term 4,2 is small and of the second order, it can be neglected, so
the conditions of stability become

da .
El?>0 if w >«

(100.43]
da : .

37<0 if we<a
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a These conditions for stability
Fla) 0 and, hence, for the exlstence of.sta-
tionary oscillations, can be represented
! graphlcally in a simple manner. Let us
trace the curve ¢ = F(a) determined by
Equation [100.30], which can be written
as

—— - ——

2
% - a2[(we2 — ) + 4620(2]

m
X
e e D

L Furthermore, let a = Fj(a) be the curve
a corresponding to the exact resonance

Figure 100.1 w,(a) = . Assume that these curves

have the shape shown in Figure 100.1.

On the portion of the curve F(a) situated to the left of the curve F,(a), the
condition of stability exists in intervals such as AB, CD, ... , where the am-
plitude @ increases with increasing frequency «. On the parts of the curve
F(e) situated to the right of F,(c), on the contrary, stability exists in
intervals such as EF, HL, --- , in which the amplitude a decreases with in-
creasing frequency «. These peculiar conditions of stability of non-linear
external resonance cause the appearance of jumps similar to those which we
have already investigated in Part II in connection with the phenomena of hard
self-excitation. Thus, for example, if we excite a non-linear system from
rest by a gradually increasing frequency, the stable branch AB will be tra-
versed. At the point B, however, this stable zone ends and the amplitude
suddenly jumps up to the point B, after which for a continuously increasing
frequency of the external excitation the branch B'D will be followed. At the
point D the stable region on this branch ends, so that the amplitude drops
from D to D'. For a further increase of the frequency of the external peri-
. odic excitation the branch D'L will be traversed.

If, however, the frequency is decreased, the amplitude will not pass
through the same stages 1t traversed during the period when the frequency was
steadily increasing. Thus, for example, if the freduency is decreased from
the value corresponding to the.point L, the region D'H will be traversed in a
stable manner. Thils region, as was just mentioned, was missed during the pe-
riod when the frequency was steadily increasing. If the frequency continues
to decrease, the amplitude will Jump abruptly from the value H to the value H'
and a further change will occur along the branch H'E, and so on.

These phenomena of resomance hysteresis may be more or less compli-
cated, depending on the form of the curves F(«) and F,(a); they are usually
accompanied by quasi-discontinuous jumps and hence by simillar discontinuities
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in the energy input into the oscillating system supplied by the external peri-
odic source of energy.

As a special example, consider a non-linear system whose non-
linearity is limited only to z, that 1s, 1its non-linear function is of the
form f(x). In practice, this corresponds to a system with a non-linear spring
constant. From Equations [100.25] and [100.26],,1t is apparent that 4, = O,
and from the second equation [109.25] we get

e

2
w! = l{k-+~lffflaﬁnr)ﬁnrdr] [100.44]
m ma .

so that Equation [100.30] gives

E

=+ =
a =+ ma, + w,(a,) [100.45]
From Equations [100.29] it follows that, for the plus sign, ¢ = m; for the
minus sign, ¢ = 0. From [100.45] one can build the curve a = F(a). It is

noted that if w,(a) varies with a, for instance according to the relation

w,(a,) = w, + Aa; when A #0

the amplitude cannot 1lncrease 0.032 T
indefinitely for any «o. This |§
circumstance is another typi- 0.028 ! é
cal feature of an undamped non- l '
linear resonance. , ;

Interesting examples 0.024 J E
of Jump phenomena have been , g
obtained recently by Ludeke (6) . 0.020 ! ;
in his experimental work on 8 , : —— Experimental values

b H — — Theoretical values
non-linear mechanical systems. h 0.016 | !
By varying the non-linearity 3 ' f §
of the springs, different re- % :
sponse curves were obtained. < o.0t2 g
Figure 100.2 shows the experi- } i
] )
mental and theoretical reso- 0.008 : ;
nance curves obtained for a /g i
particular non-linear spring | k ;
of the "increasing stiffness" 0.004 / N
type. The theoretical curve / ~ e
was obtailned by a graphical
0 50 100 150 200 250

method (7) the details of Frequency in radians per second

which we omit here. Figure 100.2
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The results of this sgction and of Sectlon 99 were obtained on the
basis of linearized equations of the first approximation. In Chapter XIX the
study of the effect of a periodically varying parameter will be resumed, but
from a different viewpoint; there we will use differential equations with
periodic coefficlents.



CHAPTER XVII

SUBHARMONIC RESONANCE ON THE BASIS OF THE THEORY OF POINCARE

101. METHOD OF MANDELSTAM AND PAPALEXI

The preceding four chapters of this report have been devoted to a
survey of the theory developed by Kryloff and Bogoliuboff. We now propose
to review an alternative theory developed by Mandelstam and Papalexi (8) and
derived from the classical theory of Poincaré, which was discussed in Chap-
ter VIII. The essence of the Mandelstam-Papalexl method lies in extending
Poincaré's theory to systems having an external perlodic excitation. Certain
advantages arise from this argument. First, the questions of the existence
and stability of solutions are treated in a relatively simple manner. Second-
1y, the description of the behavior of a system in terms of 1ts characteristic
parameters is also relatively simple. Finally, the manipulation with general-
ized impedances and admittances used by Kryloff and Bogolliuboff 1s replaced
here by the analytical method, which is probably a more famillar approach to
the subject. It 1s noteworthy that the theory given in this chapter was found
to be a useful tool in connection with the numerous experimental researches
conducted by the group of scientists under thé leadership of Mandelstam and
Papalexi.

102. RESONANCE OF THE ORDER n; DIFFERENTIAL
EQUATIONS IN DIMENSIONLESS FORM

The following analysis 1s a discussion of differential equations of
the form
T+ rx= uf(tz2x) [102.1]
where the non-linear function f(¢,z,x) now depends explicitly on the time ¢.
More specifically, in what follows we shall consider the equation

i+ 2= uf(z,z) + Aysinnt [102.2]

in which we let the argument of the periodic "forcing" function be nT instead
of T in order to prepare for the study of subharmonic resonance of the order
1/n. Many circuits of electron-tube oscillators can be represented by equa-
tions having the same form as [102.2], but we shall not enter into these
generallizations here.

We shall consider the standard circuit shown in Figure 102.1 repre-
senting an electron-tube oscillator with an inductive coupling M. The exter-
nally applied €lectromotive force E = E, sin wt is inserted either in the
anode circuit between M and N or in the grid circuit between P and Q. It has
been shown that, if the effects of the anode reaction and the grid current are
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neglected, the differential equation of the circuit is

2. .
3712+CR3—;+2'= ga+c%z - [102.3]

CL
where 7, = f(V,) is a non-linear func-
tion representing the anode current <,
as a function of the grid voltage V,.

° It is apparent that V, =Al§%, where M

pm— 1s the coefficient of mutual inductance

between the anode and grid circuits.

- It is convenient to transform Equation

[102.3] into dimensionless form.

R We introduce the following

dimensionless variables:

il

tw 7 1,

Figure 102.1 n 1, 1,
where I, 1s the saturation anode cur-

rent, occurring for a sufficiently high grid voltage V,. The change of the

independent variable gives
di di dr di w

dt dr dt dr n

ﬁ_i(ﬁ)_i(ﬂ)ﬁ_ﬁwj
dt? — dt\dt/  dr\dt/dt ~ dr® a?
dE _ dE d7 _ dE w

dt " dr dt " drn [102.4]

In the new variable, moreover, E = E, sin wt becomes E = E, sin nT; hence,

‘é—lt;" = Eyn cos nT and, by [102.4],
dE
Il Eyw cosnT
Equation [102.3] becomes
2 2. .
w” d°t w dt . .
CL?d—TZ, + CR?E; + 7 =1+ CEjwcosnT
If the "dimensionless current" I = T’— is introduced, the previous equation
becomes ¢
2 2 )
w® d°I w df CEyw
CL i + CR w dr + I =1+ 1, cos nT [102.5]

If we assume that the resistance R of the oscillating circuit is small, the
autoperiodic frequency of the circuit is equal to its undamped frequency

W, = 'I/VFC to the first order. If the impressed frequency w 1s in the neigh-
borhood of the frequency nw, of the oscillating circuit, that is, if
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2

w2
CLF=wn2=1+¢ (102.6]

2
0

where ¢ << 1, the coefficient of dI/dT can be written

CRw CLRw*n w* Rn _ En
n  nle  nlw! Lw (1 + ) Lw
Equation [102.5] then becomes
d’1 Rn dI _ CE,w
1+ §)d72 + (1 + é)Lw a;—%-l =1 + 1, cosnT

If we divide this equation by (1 + &), noting that

1 _1+ée-¢ _ ¢
1 + ¢ 1 + ¢ 1 + ¢
we obtain
d°’I | Rn dI ¢ 1 CEyw
dT2 +—Lw d7'+1_ 1+$1 + 1+$Ia+};(T+—$-)—COS’nT [1027]

Since I, =-%§ =~f(%%v%) where V, 1s the saturation voltage defined by the
equation V, = MI,w/n, the "dimensionless voltage"

di w
E_ dr n _ dl
Vo oype 0
n
so that
Voy _ ~(dl
I = f(i/;) - #(5) [102.8]
Setting %%f: 26 in Equation [102.7] and rearranging, we have
d’I 1 dl dl ¢
e +I—1+éfl(d_’_)— 265 + 741 + Qeoswr
where
0 = CEw _ _CLEw _ Eg’
La+¢) L+ ¢ Lo
Letting
1 dI dl dl
[1 + gfl(d_r) - 295} = F(Z) [102.9]

one obtains
d’l _ op(dy ¢
prp + 1 = F%dT)-+ T+ 51 + Q cosnT

Differentiating this equation with respect to 7, and putting dI/dT = z, we

obtain

§
1+ ¢

I+ 2= Fl(z)z + & + AysinnT [102.710]

where A, = -@n. Equation [102.10] has the same form as [102.2].
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103. PERIODIC SOLUTIONS OF A QUASI-LINEAR EQUATION WITH A FORCING TERM
From the theory of Polncaré, Chapter VIII, it follows that a quasi-

linear equation
T+ x = uf(x,zx) [103.1]

with g = 0 admits an infinity of perlodic solutions represented in the phase
plane by a continuum of concentric circles with the origin as center. For
u # 0, but small, periodic solutions may still exist in the neighborhood of
certain circles, the gemerating solutions. In the rest of the phase plane no
periodic solutions exist, but the phase trajectories are spirals winding onto
the closed trajectories, the 1limit cycles, which exist in the neighborhood of
the generating solutions.

For Equation [102.2] the situation 1s similar, for when u = O there
exists an infinity of such linear solutions of the form

. A .
¥ = asint — beosT + Ij:Q;gsnmnT [103.2]

The fundamental problem is the determination of the functions a{u) and 6(u)
which will yleld periodic solutions for the non-linear case, that is, when
¢ +# 0 but is small. .
If, when u > 0, these constants reduce to a, and 4, respectively,
that 1is,
a(u), yo > aos  blu), L, > b, [103.3]

the corresponding solution of the linearized equation is called the principal
or fundamental solution.

In order to establish the conditions under which the expression
[103.2] is the principal solution of Equation [102.2], it is necessary first
to determine the 1limit values {103.3] of @ and & for u > 0 and then to ascer-
tain that the solution so obtained is stable in the sense of Liapounoff. In
this section we shall be concerned with the first part of this problem.

If the new variable

A .
=2z — T—OnQ sinnt [103.4]

is substituted into [102.2], that equation becomes

)\0 . . 71)\0
T sinnT, 2 + g cosnr) [103.5]

2+ z = uf(z + 1 1

Introducing into this equation the variables w and v defined by the equations

U = ZCOST + zsinT
[103.6]

v = zsinT — zZcosT
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we find
u = (Z + z)cosT = uyplu,v,T)cos
(103.7]
v = (Z + z)sint = uyplu,v,7)sinT
where
. Ay . . nAi
whum7)==f(u$nr — veosT + g sinnr, ucosT + vsinT + Yff%7C“"T)

The function ¥(u,v,T) 1s periodic with period 2w. From Equations [103.4] and
[103.6] one obtains

T = wusinT — veosT + ] fonzﬂnnr [103.8]
Since this expression is of the same form as [103.2], the principal
solution of Equation [102.2] will be found when u, = a and v, = & for u > 0.
We can now apply the procedure of Polncaré by assuming that, when
u << 1, the quantities w and v for v = 0 differ but little from a and 6, that
is,

U, =a + a; v,_,= b+ B [103.9]

where o and B8 are small numbers. From Equations [103.7] one obtains

u=u_,+ ,uflﬁ(u,v,T)cosrdT
0
(103.10]

v= v, _, + /zfz/z(u,v,'r) sin T dr
0.

The functions w and v, on the other hand, can be expanded in terms
of the small parameters u, a, and B; this, in view of [103.9], gives
w=oa+ a+ pC(r) + paD|(1) + pBE,(7) + u*G(7) + - - - : |
103.11
v=>b+ 8+ uClr) + uaD,(T) + uBE,(T) + u’G,(T) + -
where the dots designate terms of higher orders containing u®, ul,
Comparing these expansions with [103.10], one finds

C/(T) = fwﬁhhr)mSTdr; CJT)=./¢M,@T)ﬂanT [103.12]
0 0

and also
D/(T) = f[%} cosT dT; E|(T) = f[——;ﬂ cosTdr
0 0
[103.13]

[M] sinTdr

D,(7) = ﬂ%} sinrdr; Ey(r) = [| %

o,
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- ﬂ] {irﬁ} | - oY oY
where the symbols Liu and D designate the partial derivatives o and E
in which y =a = 8 = 0.
If w and v are perlodic, it 1s clear that u(2x) - «(0) = 0 and
v(2m) - »(0) = 0; in view of [103.11], this implies that
C,(2n) + aD(27m) + BE(27m) + uG,(27) + + -+ =0
[103.14]
Cy(2m) + aD,(27w) + BE,(27) + uGy(2m) + + + - = 0
The problem of determining ¢ and & in Equations [103.2], when g is small and
hence when a(u) and B(u) are small, therefore is one of finding values of «
and B which will satisfy Equations [103.14] and which will reduce to zero
when u = 0.
Since there are two equations, it is possible to determine o and 8
as functions of u, provided
2x 2r
C,2m) = [pla,b,7)eosTdr = 05 Cyem) = [¢la,b,7)sinrdr = 0 [103.15]
0 0
These equations give the first-order solutlion for e and b, since other terms
in [103.14] contain small factors «, B, and u.
For solutlons valid to the second order, the equations
aD,(2n) + BE(27) + uG,(27) + - -+ =0
[103.16]
aD,(27) + BE,(27) + uG,27m) + - -+ =0
must be satisfied for any arbitrary but small p. These equations admit single-
valued solutions with @ and B8 approaching zero as u approaches 0 if

D,(2m) E(2m)
D,(27) E,(2m)

(103.17]

Hence the problem of determining the 1limit values of the coefficients a and &
in Equation [103.2] when u > 0 is solved by Equations [103.16] provided the
condition [103.17] is satisfied.

104. STABILITY OF PERIODIC SOLUTIONS

The condition for stability of périodic solutions can be obtalned
by utillzing the variational equations of Poincaré. If we introduce in Equa-
tions [103.7] the quantities u = uy, + 7 and v = v, + ¢, where u, and v, are
perlodic with period 27 and n and ¢ are small perturbations, and develop the
function ¥(u,v,7) in a Taylor serles around the values u, and v,, we obtain
the variational equations
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g—z‘ = (uy,cost)n + (uyp,cosT)é
[104.1]
% = (uy,sinT)n + (uy,sinT)¢

since the functions u, and v, satisfy Equations [103.7]. Equations [104.1]
have periodic coefficients. Suppose that n,(7), ¢,(7) and n,(7), £,(7) are two
sets of solutions forming a fundamental system. One can assume the inlitlal
conditions 7,(0) = 1, ¢,(0) = 0 and 7n,(0) = 0, £,(0) = 1. Since (T + 2m),
¢, (r + 2m), ... are also solutions, one can write

m(r + 27) = an(r) + dny(7); ' &(r + 2m) = af,(T) + bé,(7)
[1o4.2]

n (T + 2m) = eny(T) +dny(7);  &(r + 2m) = c&(T) + déy(7)
Whence, for T = 0, in view of the initlal conditions,

n@2r) = a; &@m) =b; n,2m) =c¢; &(2m) =d [104.3]
It is possible to select a fundamental system so as to reduce
(104.2] to a canonical form where n,(7 + 2m) = S;n,(7) --- . The formation of

such a system depends on the solution of the characteristic equation

_|la=-8 b _|m@m - S ¢,@2m) | _ 4y
F(8) = c d — S, - ny(27) &@2m) — S =0 [10%.4]
This can be written as
F(S) =8+ pS+¢=0 [104.5]
with
p = — [n,@2n) + &@2m)] and ¢ = [n@m)&,(2m) — ny(2m)¢(2m)] [104.6]
The parameter u in [104.1] is supposed to be fixed; thus, if u = 0, gg =
g& = 0, so that n and ¢ remain equal to their initial values, namely,
m(m) = &(7) = 1;  m(7) =4(1) = 0 [1ou.7]

Hence, for u= 0, p = -2 and ¢ = +41. For u # O but small, we conclude, there-
fore, that p <0 and ¢ > 0. The system i1s stable if the real parts of the
characteristic exponents h; and h, (see Section 27) are negative, which im-
plies that |e2™] < 1 and |e?™2 <1, that is, the moduli of the roots S, and
S, are less than unity. Equation [104.5] has roots with absolute values less

than unity only if
p > — 2; 1+p4+4¢>0 [104.8]

which follows from the equations

1+ p+¢g=(5-1(S,—-1); p=-(S+8) (104.9]
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On the other hand, for u = 0, p = -2 and ¢ = +1, as was shown.
Hence, the conditions of stability [104.8] can be satisfied for small posi-
tive values of u only when the first non-vanishing derivatives of p and » + ¢
with respect to u are positive for u = 0.

In order to calculate these derivatives, replace n and ¢ in Equa~
tions [104.1] by », and ¢, and integrate between 0 and 2mx. This gives

2' 2’
n,@2n) — n,(0) = n,27m) — 1 = ,ufwunlcosr dr + yfwvé‘l cosT dT
0 0

[104.10]

2x 2r
£(2m) — £,(0) = ¢,(2n) = ufwunl sintdr + ﬂf’/’,,fl sinT dr
0 0

Differentiating these equations with respect to u, one obtains

dn,(2m)

i f(l/l meosT + Y & cosT)dT + ,uj( —LcosT + Y, —fl—cos-r)d-r

[104.11]

d51(277)

rr f(l// n,sinT + Y, é sinT)dr + ﬂf( —sint + z//v—flsm-r)d-r

Passing to the limit u = 0 and taking into account [104.7], one gets

dnl(zn)} r dé,(2m) .
= |y, cosTdr = D,(2m); [——1—] = |y, sinTdr = D,(2m)
[ du u=0 J. ' du u=0 J‘ ‘
[104.12]
dn2(27r)] & [d$2(27r) Foo
— = |y, cosTdr = E,(2m); ] = |yY,sinTdr = E,(27)
[ d/.l u=0 6[ ! d” u=0 bf z
From [104.6] and [104.12] one obtains
dpy  _ . [M] — 0.
(dﬂ)ﬂz0 = - [D,2m) + E,2m)]; L
[104.13]
[dZ(p + q)] _ D1(27T) D2(27T)
du® E,(27) E,(27)
This leads finally to the following conditions of stability¥*
D,(2n) D,(2n)
D,(2m) + E,27) < 0 and >0 (104.14]
E\27) E,(27)

* Conditions [104.14] have been formulated by Mandelstam and Papalexi (8). The proof given here was
developed by Professor W. Hurevicaz.
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105. SUBHARMONIC RESONANCE OF THE ORDER ONE-HALF
FOR A SOFT SELF-EXCITATION

We shall apply the theory outlined in the two preceding sections to
the important practical case when n = 2. This case has already been investi-
gated in Chapter XVI by the quasi-linear method of Kryloff and Bogoliuboff.

We employ the usual polynomlal approximation for the non-linear
element of the system, the electron tube, that is,

i, = fV) = i, + a/V, + V" + oV + oV + o)V (105.1]

8

In Section 51 it was shown that for a soft self-excitation the approximation
can be limited to the first four terms, that is, a, = a; = 0, whereas for a
hard self-excitation the full polynomial [105.1] must be used. We have also
seen that the important terms are those containing the odd powers of V,, but
for greater generality we'shall use the full expression [105.1]. Using the
?9tation 3§ Section 102 and designating the "dimensionless" grid voltage

s

$§-= x = qr’ one has
L= file) =1 +az+ a2’ + a,2® + a,z' + a,2® [105.2]
Using Expression [102.8], one obtains the following expression for uf(z,z) in

[102.2]:

uf i) = 1o (lo - 2600 + ) +
+ 20,2 + 30,0 + 4a,2° + 5agx']E + fx) [105.3]
Since 1n practice the coefficient a, is very small, we can put
Equation [105.3] then becomes
fle,2) = (e+ 22 + Aga® + A,2° + Age')s + ai:c (105.4]

2

For » = 2, Expression [103.2] is

x = asinTt — becosT — %ﬂsinz'r = Xsin(r — ¢) — %isin2-r [105.5]

In this section we shall consider systems having soft self-excitation, that
is, systems in which A, = A, = 0. In order to determine the limit values
[103.3] for a and b, one must solve the equations

2 2
fz/;(a,b;r) cosTdr = 0 and fw(a,b,'r) sintdr = 0
0 0

Since the function ¥(a, b,7) is, by definition, f(z,%), in which z has the
value [105.5], we obtain
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2n 2x 2
flj;(a,b,-r) cosT dr = J(k + 22 + A.qx2):'c cos T dT + f—fx cosTdr
0 0 20
[105.6]
2r 2n 5 2r
jw(a,b,-r) sint dr = f(k + 22 + A,2®)@ sinTdT + &—fx sinTdr
0 0 20

Carrying out thils substitution and the integrations, one finally obtains

afk + (e bu&?)] S (-t )

4 9 3 a,
2 [105.7]
b[k+%(a2+bz+ 2_9*0)] - _a(%+é)

From these expressions one obtains the square of the amplitude X of the prin-
cipal solution

2 2
X*=a*+ b = -Exg-AiJki LI iz} (105.8]

9 ay

and the phase

[105.9]

The principal solution corresponds to real values of X, that 1s, to values of
X such that X% > 0. Since the term - %)mz in [105.8] is always negative, it
is apparent that this condition 1s fulfilled 1f the second term on the right
of [105.8]) is positive and is greater than the value %)\02. Hence, if A; and
k are negative, only the plus sign can be taken before the radical. If, how-
ever, A, <0 and k > 0, the,condition X2>0 may be fulfilled for either sign
of the radical. All depends, of course, on the magnitude of A,, k, and é%,
that is, on the magnitude of the constants of the circuit.

Fulfillment of the condition X2 > 0, however, does not mean that the
principal solution exists in practice. Its existence implies that the oscilla-
tion be stable, which requires that the conditions [104,14] be satisfied. In
Equations [103.13], which determine the functions D,(7), D,(7), E,(7), and

.Ez(r), appear the expressions {%%] and {%%] previously defined, that is,

{dw}=g§£+?i6_¢. [d_w}= of 8x | Of 9% (4195 40]

du 8z Ou éxr ou’ dv dx v or Ov
where
) Ay . . . 2
T = usint — vCOST — Ty&nZT; r = ucostT + vsint — —g—ws27
Hence

Oz _ sinT; oz = COST; = COS T ; — = sinT
ou ’ ou ’ ’ v
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This gives

D,(27)

Oax

2sraf 2x
!

—— sinT cosT dT + f 6—f cos’TdT
ox

2x 2r
E,(2m) = fg cos’rdr + fﬂ sinT cos T dT
5 0% § 0%

[105.11]
2” 2’
D,(27) = fﬁf_ sin®rdr + fﬂ sinT cosT dT
b ox 8 ox
. Zof Zof
E,(27) = - f—- sinT cos T dT + f—— sin®r dr
5 0% 5 Oz
Moreover, from [105.4], one has
of _ .. £ of _ .
- 2(1 + A,z)z + 2, o7 = k + 22 + Ay [105.12]

The criteria of stability [104.14] can be applied now both to the principal
solution [105.5] and to the heteroperiodic one, in which a = b = 0. Carrying
out the calculations [104.14] in which D,(2n), --- are replaced by their ex-
pressions [105.11] and [105.12] for both the principal and heteroperiodic
solutions, one finds that the conditions for stability, and hence for the
existence of the principal solution, are

Asir . MY oo i+ Ay 2X0 ]
k+ S+ 2 <o A3k+4(X+T>>O [105.13]
For the heteroperiodic solution, they are
)\2 )\2 4__2 )\2
2o . 2o S _ 2
K+ AT <0 (k+A318)+a22 0 >0 [105.14]

The last inequalities, in view of [105.8], reduce to

A A 8
Lo+ fixt <, A3{+ \/-9?—#5—1 >0 [105.15]

a
These inequalities are satisfied if A; < 0 and the minus sign is taken before
’the radical. We re-emphasize here the important point which has previously
been noted in Section 51, that is, for a soft self-excitation, the coefficient
of the cubic term in the polynomial approximation of the non-linear character-
istic must be megative. Under these conditions Expression [105.8] for the
square of the amplitude X becomes

< o
n

e.o|>”

T

™ ro)

2y b N o_ & Aq
X* =+ 4] {k+ 5 P + As g [105.16]

Since k = X "22(] ha "é), where 26 = Rn/Lw, it 1s seen that when k > 0 the
2 . ., '
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energy input from the electron tube outweighs the dissipation of energy in the
circult, whereas when k < 0 the dissipation of energy exceeds the input. From
Equation [105.16] it 1is observed that the existence of a stable amplitude when
k < 0 depends on the values of other parameters. Physically this means that
the self-excitation of a system which is not normally self-excited (A, = 0)
can be produced by the effect of the externally applied electromotive force
(Ag # 0). If A, = 0, the quantity ¢ does not exist and one has X2 = %fj which
coincides with the equation previously obtained from the theory of Poincaré.

Comparing the condition of stabllity of the principal solution with
that of the heteroperiodic solution, one finds from [105.16]

A [ A3l A2\
7 s Y- (Ic - —18—0) [105.17]

On the other hand, from [105.15] one finds

£ oA (AN
> % (& T ) [105.18]

It 1s thus seen that one solution appears at the point where the other disap-
pears and vice versa, so that there is no interval in which both exist at the
same time. From the equation

£ A _ (1Al
af T 9 (+ ) [105.19]
where
k_a1—2'0_2_0i§=k__&0_§
T a, a, 0 a,

one can obtain two values ¢’ and ¢” determining the limits of stability. These
limits determine the zone of discrepancy 4¢ = ¢” - ¢’ between w and nw, within
which a stable principal solution exists. One obtains the following expression
for A¢ valid to the second order of the gquantity 6:

2 2,2
144 ’ A. A )\
A = ¢" — ¢ = 2a2‘/—9°~(1 — kA, - 3360) — k! [105.20]
Considering A¢ as a function of A,, 1t is seen that for
A 2 \
2z A—sz[l — kydy — VI = 2,4, | [105.21]

Aé 1s real, hence the zone ¢” - ¢’ exists. Beginning with the value of Ao
given by the equality sign in [105.21], the real values for A¢ appear and Aé
increases up to a maximum value

4¢, = % VI = 2k, 4, [105.22]
3

when the amplitude A, of the externally applied excitation reaches the value
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Ao _ 201 — kgAy)

9 = Ag [105.23)
For a further increase of A,, the interval A¢{ decreases and becomes zero when
2
)‘—9" - %[1 — koAy + VT = Zkody] [105.24]
3

If one continues to increase A, the interval A¢ becomes imaginary, that is,
it ceases to exlst.

Summing up, one can say that the external periodic excitation having
a frequency w which differs somewhat from twice the frequency w, to which the
oscillating circuit 1is tuned is cap%blezofzproducing oscillat{ons in the ecir-
cuit provided the coefficient ¢ = &LTiZF&m" remains inside the interval corre-
sponding to values of A, in the interval

2
21— ko = VT = 24| = Ao Bl1 - kydy + VT = 2heA,]
3 3

106. NATURE OF SUBHARMONIC RESONANCE OF THE ORDER ONE-HALF
FOR AN UNDEREXCITED SYSTEM

In the preceding section the conditions for the exlstence and sta-
bility of the principal solution were established without specifying the sign
of the quantity

a, — 26(1 + ¢)
=k, — 2
a, a,

k =

As has been mentioned, this quantity characterizes the stability of the system
in the neighborhood of equilibrium, when the effect of the terms containing
the small quantity z (see Equation [105.3]) 1s negligible. Hence when k < 0 '
at the point of equilibrium (z = 0) the system is stable, and when k > 0 it
is unstable. These conditions correspond to the existence of either a stable
(k < 0) or unstable (k > 0) singularity in a self-excited system without an
external force. When subharmonic external resonance is present, the situation
is different in that even when k < 0 the principal subharmonic oscillation may
arise if the amplitude of the external periodic oscillation is contained in
the zone A¢ specified in Section 105.

In this section we shall investigate a system where k < 0, that is,
a system which is stable without an external excitation. We call such a sys-
tem an underexcited one. If such a system is subjected to an external excita-
tion with frequency w differing from 2w, by a considerable amount, only a
relatively small heteroperiodic oscillation will be present. If, however, w
approaches 2w, so as to be within the limits of the zone A¢, the principal
oscillation will suddénly appear and will have exactly the frequency'w/é. If
the parameter ¢ is varied, the frequency of the principal oscillation will
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2 2
always be w/2, but it is worth noting that the variation of ¢ = ﬁLiiagﬁﬂL can

be accomplished in two different manners, that 1is, by varying either w or w,.
If w is varied, the frequency of the subharmonic oscillation will follow the
variations of w, since it is always w/2; if w, 1s varied, the frequency of the
subharmonic oscillation will remain constant. It is thus seen that when the
principal oscillation exists its frequency 1s always 1/2 (or 1/n for subhar-
monic resonance of the nth order) of the externally applied frequency w, but
the range within which it exists is influenced by 4, that 1s, by both w and w,
simultaneously. Moreover, the range A¢ is a function of the amplitude A,, as-
was shown at the end of Section 105.

The phenomenon of subharmonic resonance of the order one-half (or,
more generally, of the order 1/n) presents features radically different from
those of ordinary linear resonance. It 1s sufficient to investigate the be-
havior of the function X°Z given by Equation [105.16]. Since the range within
which the principal solution exists as well as the amplitude X of this solu-
tion depend on ¢ and not on w and w, individually, it is convenient to take
the quantity ¢ as the independent variable instead of w as is customary for
linear systems.

If one plots the results pre-
viously obtained concerning the ranges
Aé depending on the amplitude A, of the
external excitation, one obtains the
curves shown in Figure 106.1, which were
corroborated experimentally by physi-
cists of the Mandelstam-Papalexi school.
It is observed that this phenomenon of
subharmonic resonance differs radically
from classical linear resonance, which
has the appearance shown by the dotted
line. The phenomenon is entirely dif-
Figure 106.1 ferent when k > 0.

S |

107. SUBHARMONIC RESONANCE OF THE ORDER ONE-HALF
FOR A HARD SELF-EXCITATION

The procedure remains the same as in Section 105 except that now wé
have to introduce Expression [105.4] with A, # 0 and A; # 0. Carrying out the
calculations, one obtains, instead of Expressions [105.7], the following ones:



Discussion of the conditions of stability in Equations [107.1] is too compli-
cated. One notes that in practice the coefficient A, of asymmetry 1is very
small and can be neglected. One can further simplify the problem by assuming
that the square of the amplitude of the principal solution 1s much larger than
the forcing term, that is, X2 >>-ﬁﬂi. With these simplifications, one obtains
the expression /

A 8

9 PR =0 [107.2]

As yo | As g +
3 X* + 1 X+ k =+
Applying the same procedure as that followed in Section 105, one finds the
inequalities
2 2 2 2 2
2 EL_ Ao _ § . 2 —1/2 3

These inequalities can be satisfied simultaneously if A,X%+ A, < 0 and the
minus sign is taken before the radical.
The stable solution for X2 is then given by the equation

A A2 8 Aol g2
SR v T [ s
As A52 A5( 9 a;f) [ 7 ]

Equation [105.9] for ¢ is also applicable here.
If the external excitation is absent (A, = 0 and ¢ = 0)

2 ==._£1§ + :iﬁi._ §lﬂ 107.
X Z tVaiz -z (107.5]

The condition A, X?+ A, < 0 implies that systems where both A, and A; are
greater than zero are to be excluded. Hence the following combinations of
signs are possible:

1. A; <0, 4,<0; 2. A; >0, A, <0; 3. A; <0, A >0

- \/(‘3_2)2_ I—flﬁsl (107.6]

In the first two cases

As + (4£f-+ 8k or X' =

X' =-
As A7 A
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X% can be positive only when k > 0, that 1s, when the system is self-excited.
These two cases therefore characterize soft self-excitation in that the ampli-
tude increases with k& beginning when k = 0.

The third case yields different results, however. It is noted that,
if A; >0 and 4; < 0, the characteristic of the non-linear conductor, the
electron tube, exhibits an inflection point for a certain value of the ampli-
tude (see Section 51). In this case

As
AS
It 1s observed that in this case one can also have k < 0, which means that a

periodic oscillation may occur in an underexcited system. In order that no
self-excitation be possible one must have

2
X' =+ éi)4—8]‘

+ (As v [107.7)

> As [107.8]
8 4|
It can be shown, however, that in the interval
Al Al ‘
> k| > > (107.9]
64| 8|4

the heteroperiodic oscillation is unstable. Thus in the interval [107.9]
neither the principal nor the heteroperiodic oscillation exists. This implies
that |k| must be greater than A,’/6|4; in order to obtain resonance of the

order one-half,
Proceeding in the manner indicated at the end of Section 105 and

omitting the intermedlate calculations, we obtain the following results.

By requiring that X2 given by [107.4] be real, one finds that there
exist two intervals A4¢, (for a stable principal oscillation) and Aé, (for a
stable heteroperiodic oscillation) with the condition

4f, > A, [107.10]

which shows that in a certain region these interbals overlap. ,Hence there
exists a zone in which both a subharmonic and a heteroperiodic oscillation may
exist at the same time. It 1is recalled that for a soft self-excitation these
intervals do not overlap, so that the oscillation of one type appears at the
point where that of the other type disappears.

Moreover, from Equation [107.4] it is apparent that the positive
quantity X® is composed of two essentially positive parts. One of these parts
(-ﬁf)is constant since it depends on the characteristic of the non-linear
element. Hence, if X? is considered as a function of &, 1t 1s noted that the
curve.Xz(e) cannot become zero either at the beginning or at the end of the
interval in which X? exists, but has to start from, and end at, a constant
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value (-%) This feature is character- X2
5
istic of the phenomenon of hard self-

excitation, as has been pointed out in

Section 51. This is illustrated by
Figure 107.1, where the "discrepancy" ¢ c A

is assumed to vary while the externally

-

P 1®

L |
applied amplitude A, remains constant. ! 1 : !
For & < 0 and for |£| sufficiently large, t : Py SR S—
there will be no principal oscillation : F___AEX__,: :
and only a relatively weak heteroperi- { ] [ i l
odic oscillation until the value ¢ = ¢, & & 0 s

is reached; at this point a powerful
oscillation of subharmonic resonance of
the order one-half will set in abruptly, see Point A in Figure 107.1. With a
further increase of ¢, the amplitude X increases relatively slowly, passing
through a rather flat maximum. For ¢ = ¢, the subharmonic oscillation will
suddenly disappear. If, however, one starts with large positive values of ¢
and decreases them gradually, the subharmonic oscillation will start at the
point ¢ = ¢, and will disappear at C for ¢ = ¢ . In other words, for in-
creasing &, the principal oscillation starts abruptly at A and ends abfuptly
at D; for decreasing ¢, it starts at B and ends at C in the same abrupt man-
ner. The sudden jump during both the appearance and disappearance of the

oscillation 1s numerically equal to (-f%%.
5

Figure 107.1

108. SUBHARMONIC RESONANCE OF THE ORDER ONE-THIRD
For n = 3 the principal oscillation [103.2] becomes

% = asinT + bcosT — %sin3r [108.1]

Proceeding in the manner explained in Section 105, one obtains the following
expressions (compare with Equations [105.71]):

Ay (g A_o} oy (e =y Meds
a[k+4(X+32)+a2 = — (a® — 69 =%
\ [108.2]
As(y2 | Ao ] _ .= Mody
b[k+4(X+32) 0=+ 2ab g
Squaring, adding, and rearranging, one obtains ’
2 12 2 2 42
2 As(y2 ﬂ} S0 2ods v
X{[k+ 4(X+32) ay 327 X
Leaving out the trivial solution X = 0, we have
A )\22 2 )\A2 \
e e ) - 1083
2
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If we let
A (e | Ao _
k+4(X+32)_Y
Equation [108.3] becomes
_ My +‘/— AL | AZk &
Y = 32.16 — F 32% . 16% + 32 .8 |Aa| a7 [108.4]

¢

It is seen that the quantity under the radical can be positive only if k > 0.
In other words, a periodic oscillation with a frequency of one-third of the
externally applied frequency can exist only if the system 1is self-excited.

109. EXPERIMENTAL RESULTS

The preceding theoretical considerations can be verified by the fol-
lowing experiment. An ordinary self-excited electron-tube oscillator 1is induc-
tively coupled to a circuit containing an electromotive force with frequency
w. The oscillating circuit 1s tuned so that it has a frequency of approxi-
mately w/2. The oscillator has first been adjusted to a condition of soft
self-excitation, that is, self-excftation starts from zero at a critical value
of the coupling k if one gradually changes the feed-back coupling. When the
critical condition is thus established, the coupling i1s decreased below that
critical value (k < 0). Under such circumstances, the oscillator remains
underexcited. If the external excitation of frequency w is now introduced,
the previously discussed phenomena of resonance of the order one-half make
their appearance. If the discrepancy ¢ remains outside the interval A¢ (Equa-
tion [105.20]), the circuit exhibits a vanishingly small heteroperiodic oscil-
lation with a frequency the same as that of the external excitation. As soon
as ¢ enters the interval A¢, = ¢,” - ¢,", an intense subharmonic oscillation
with frequency w/2 sets in at ¢ = f;; this oscillation passes through a max-
imum for a value of ¢ in the interval A¢, and disappears at ¢ = ¢,°, as shown
by Curve 1 in Figure 109.1. If one now reproduces the phenomenon for a some-
what smaller value Ao, of the ampli-
tude of the external excitation, one
obtains Curve 2, which has a smaller
maximum than Curve 1. For a suffi-
clently large value of A, the subhar-
monic resonance disappears entirely,

which 1is in accordance with Equation
[105.24]. It should be noted that
in these experiments the oscillator

Curve 2 |”

remains below the polnt of self-

' ' 0
d 2 b2 excitation if the external electro-

igure 109.1 motive force is withdrawn.



CHAPTER XVIII

ENTRAINMENT OF FREQUENCY

110. INTRODUCTORY REMARKS

If a periodic electromotive force of frequency w is applied to an
oscillator tuned to a frequency w,, one observes the well-known effect of
beats, or heterodyning, which can be heard through a headpﬁone in a circuit
inductively coupled to the oscillator. As the difference between the two
frequenclies decreases, the pitch of the sound decreases, and from linear the-
ory one may expect that the beat frequency should decrease indefinitely as
|w - wy] > 0. In reality, the sound in the headphone disappears suddenly at
a certain value of the difference (w - wy), and it is found that the oscilla-
tor frequency w, falls in synchronism with, or 1s entrained by, the external
frequency w within a certain band of frequencles. This phenomenon is called
entrainment of frequency, and the band of frequency in which the entrainment
occurs 1s called the band or the zone of entraimment. Figure 110.1 represents
the difference |w - wd plotted against the external frequency w; the\interval
Aw 1s the zone of entrainment in which both frequencles coalesce and there
exists only one frequency w. On the basis of linear theory, the difference
|w - wy| should be zero for only one value of w = w,, as shown by the broken
lines.

The phenomenon of entrainment of frequency is a manifestation of
the non-linearity of the system and cannot be accounted for by linear theory.
This effect was apparently recognized long ago, but its theory was not devel-
oped until recently. Thus, for example, Van der Pol, who developed the the-
ory of the phenomenon (9), observes that "the synchronous timekeeping of two
clocks hung on the same wall was already known to Huygens." Before Van der
Pol, Lord Rayleigh (10) observed a sim-
ilar effect in connection with acoustic
oscillations. Vincent (11), Moller jw - wl .
(iz), and Appleton (13) have also in-
vestigated the phenomenon. In recent
years Russian physicists have analyzed
the phenomenon in the 1light of modern
methods of non-linear mechanics, so
that at‘present the matter seems to be
well understood and offers an inter-
esting field of research, particularly N
in connection with the problem of syn-
chronizing oscillating systems. Figure 110.1
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The entrainment phenomenon has been analyzed in Chapter XVI on the
basis of the quasi-linear theory of Kryloff and Bogoliuboff, but it is pref-
erable to treat this matter in more detail, starting from the discussion of
Van der Pol and concluding the analysis with the topological method of And-
ronow and Witt.

Electron-tube circults, as usual, offer a simple way of obtaining
the differential equations from which conclusions regarding the phenomenon of
entrainment can be formed. It must be noted, however, that the entrainment
effect 1s a general property of non-linear systems acted on by a periodic ex-
citation with a frequency irr the neighborhood of the autoperiodic frequency
of the system. Acoustic entrainment is also sufficiently well explored at
present.

As far as 1is known, no special studies of mechanical entrainment
have been made so far, but the following example is worth mentioning. If one
actuates a mechanical pendulum by a periodic non-linear torque, one obtains
beats if the two frequencies are sufficiently far apart; these beats can eas-
i1ly be observed as the envelope of oscillations recorded on a moving chart.

If the frequency w of the exciting moment approaches w,, the frequency of the
pendulum, the period on the envelope becomes longer. At a certain point, the
envelope suddenly becomes a straight line parallel to the motion of the re-
cording paper, and beyond this point no further beats are observed. The non-
linearity of the torque in this case is generally due to the kinematics of the
mechanism which drives the pendulum by springs attached to a crank.

One may assume, therefore, that the phenomenon of frequency entrain-
ment arises whenever there is a non-linearity in the differential equation of
a system subject to an external periodic excitation with frequency sufficient-
1y near the autoperiodic frequency of the system.

117. DIFFERENTIAL EQUATIONS OF VAN DER POL

The differential equation of the circuit shown in Figure 111.1, in
which E is an external electromotive force with fixed frequency w; inserted in
the oécillating circuit, is

di

1 ¢ di
L——+Rz+—c—0fzdt—M

dt

77 = E,sinw,t [111.1]
Assuming that the anode current ¢,, considered as a function of the grid volt-
age e, , ls approximated by a cubic parabola, we have

2

iy = fle) = Se,(1 - %) [111.2]
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Figure 111.1

where V, is the "saturation voltage," which was defined in Section 51, and S
is the transconductance of the electron tube. As usual, we shall neglect the
grid current and the anode reaction. Introducing the notations

t
v:ﬁ:ﬂ. a—.M_S_.E. =l-@' B=ﬂ' (‘.)2=L
v, cv, ’ ~Ic " 1° YT 3LC’ v,' YT IC
we obtain
¥ — av + y9° + wlv = Bwlsinw,t [111.3]

It is noted that the left slde of this equation 1s of the same general type
as Equation [44.1].
Van der Pol assumes as the solution of this equation the expression

v = b, sinw,;t + b,cosw,t [117.4]

where 6, and b, are certain slowly varying functions of time. Substituting
this expression into [111.3], equating like coefficients, and neglecting sec-
ond derivatives, we obtain

26, + 26, — aby(1 - f;) =0

[111.5]
. b2 9
26, = 2b, = aby(l = 73) = = Buj

0
where
p = 2w, —w); b =0b+0b af = Si [111.6]
Z'}'

It 1s apparent that, if 6, and b, were constant, the solution v would be
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periodlc with frequency w,; according to the previous definition we would call
such solutions heteroperiodic solutions.

Van der Pol discusses two particular cases of Equations [111.5],
namely, linear oscillatlion and absence of external excitation. In the first
case y = 0, af = o, and the equations are easily integrated. In the second
case the approach to a limit cycle 1s ascertalned, as 1s to be expected since
in this case we have the normal Van der Pol equation.

For the general case, that i1s, when » # 0 and E, sin w,t # 0, we
shall follow the presentation of Andronow and Witt (14) which will permit es-
tablishing a more definite connection with the representation of the phenom-
enon in the phase plane. The results which will be so obtalned coincide with
those obtained by Van der Pol by a somewhat different argument (9).

It is noted that Equations [111.5] are of the form studied by Poin-
caré, that is,

db
ml' = P(bl,bz)y

e~ Qby,5,)
if 4, and b, are taken as the variables of the phase plane; thus the condi-
tions for a stationary oscillation, &, = constant and &4, = constant, reduce to
P(b,,56,) = @Q(b,,5,) = 0. Hence the singular points of the system [111.5] give
preclsely the condition for the heteroperliodic state with a single frequency
w,. In the neighborhood of the singular points, &, and b, are slowly varying
quantities. This may be expressed by saying that the solution [111.4] is an
ampllitude-modulated function, the period of modulation approaching infinity as
the frequencles wy and w; approach each other.

It is seen that the whole procedure 1s now reduced to the investiga-
tion of the singular points of the differential equations [111.5].

112. REPRESENTATION OF THE PHENOMENON IN THE PHASE PLANE
If we introduce the notations

x:ﬁ’ y’:-b—z-’ az—z—; A=—Bw0, 7‘2=x2+y2; T=’t£!'[112.1]
a, a, o a,q 2
Equations [111.5] become
dz _ z(1 — r%) — ay
dr
[112.2]
dy _ 2
2 =gz + y(l —r%) + A4
dr
The equation of the phase trajectories is
d A+ ar + y(1 = 7*

dr  —ay + z(1 — r%)
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To investigate the nature of the singular point (z,,y,) we use the standard
procedure given in Chapter III. If we let

x=x,+& y=y,+n [112.4]
the differential equations [112.2] become

g.f_. = P(&,7) = mé + nn + terms with &% nt, .-
(112.5]

% = Q(&n) = pé + gn + terms with &, n°, - - -

The nature of the singular point (=z,, y,) i1s given by the form of the roots of
the characteristic equation

S:—(m+¢)S + (mg — np) =0 [112.6]

For a stable singular point it is necessary to ascertain first that the singu-
larity is not a saddle point, which implies that (mg - np) should be positive.
If this necessary condition is fulfilled, then the condition of stability is
that the term (m + ¢) should be negative. This implies that the real part of
the roots should be negative; thus one has either a stable nodal point when
the roots §, and S, are real or a stable focal point when S, and S, are con-
jugate complex. If the system [112.2] has stable singular points, the motion
approaches an oscillation with a single frequency w,; since both &, and &, tend
to become constant for ¢ ¥ e,

If the system [112.2] possesses a limit cycle, the functions z and
¥y, and hence also ¢ and n, are periodic with period 2sw. The quantities &4, and
b, are also periodic, which means that the Van der Pol solution [111.4] for
this system represents beats between the heteroperiodic and autoperiodic
oscillations.

We know from the theorem of Bendixson, Chapter IV, that any non-
closed trajectory which neither goes to infinity nor approaches the singular
points winds itself on a 1limit cycle. This limit cycle 1s stable for ¢ + +e
and unstable for ¢ » -, From a practical standpoint only the stable limit
cycles are of interest; we know from Section 25 that in the Interlor of such
cycles there exist, generally, 2n + 1 singularities whose sum of indices is
always +1. This means that, if the number of saddle points 1s n, the number
of singularities with index +1 1s necessarily n + 1 so as to make the sum of
the indices +1.

The "coordinates" (z,, y,) of the singular point are given by the
equations .
Ty = = b y0=——”(1A— o) [112.7]

where p = r,2 1s determined by the equation
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afp + p(1 — p?) = 4% [112.8]

For a fixed A, Equation [112.8] represents in the (p,a)-plane a curve of the
third degree which gives the "amplitudes" yp = 7, of the singular points for
any ¢ = 2(wy - wy)/a. The quantity A is the parameter of the family of the
curves [112.8]. Any point of the (p,a)-plane represents a singular point of
the differential equations [112.2] for a given value of the parameter A. The
nature of the singular points in the (p,a)-plane depends on the nature of the
roots of Equation [112.6].

113. NATURE AND DISTRIBUTION OF SINGULARITIES;
TRANSIENT STATE OF ENTRAINMENT

The curves represented by Equation [112.8] have the appearance shown
in Figure 113.1. For sufficiently small values of the parameter A the curve
consists of two branches, M, and M, ; the figure shows these branches for
A% = 0.1. For an inereasing A the branch M, increases in size, and the branch
Ml' rises until both branches join as shown by the curve M. If 4 is further
increased, there exists only one branch M, shown for A% = 1. It is noted that

|MIN N

M,; A%=0.1 \\\\\\\\ M,; A2z B,

i §§

A

l?’
Stable /' \\ Stable
Focal Points Saddig A’ Points Ky I' Focal Points
LTINS 22 N
Iy e frocd S o
g | 2 R e e S UM LU NSNS
B B S B R RSB G ks

Unstable Nodal

' 2 _
Mis A" =0l Points

Figure 113.1

the curves M of the family exist only above the a-axis and are symmetrical
with respect to the p-axis. If one substitutes Expression [112.44 into Equa-
tions [172.2], one obtains Equations [112.5] with the following values of the
coefficients m, n, p, and ¢:

g—f - 5[(1 - p) - 2x02] + n[— (a + 2x0y0)] + terms in &%, n%, . .
[113.1]
dn

dat 5[“ - 2%%] + 77[(1 - p) — 22/02] + terms in &%, p% - . .
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where z, and y, are given by Equations [112.7]. Thus the characteristic equa-
tion of the system [113.1] is

S2—2(1 - 298 + [(1 = (1 —3p) +a¥ =0 [113.2]

From this equation one can determine the zones of separation of the roots of
various types as was shown in Chapter III. These zones, when drawn in the same
(p,a)-plane as Figure 113.1 in which the curves [112.8] representing the loci
of singular points are drawn, will indicate the nature of singularities in
that plane.

We note first that the region of saddle points 1s determined by the
inequality }

(1—p)1 —38p)+a*<0 [113.3]

for, with this condition, the roots are real and of opposite sign. The curve
(1 - p)(1 —3p)+a®>=0

is an ellipse E with its center situated on the p-axis, and Condition [113.3]
means that the region of saddle points is situated inside this ellipse. The
quantity under the radical sign in the expression for the roots §; and S, of
[113.2] is p? - a?. Hence the straight lines B and B,, expressed by

p+a=0 and p—a=20

which bisect the first and the second quadrants represent the divides between

the real roots and the complex ones. These lines are tangent to the ellipse

at p = 1/2. Inside the angle B(HBlforméd by these lines lies the zone of nodal

points and saddle points; outside it, the zone of focal points. The area in-

side the ellipse, as was shown, is the zone of distribution of saddle points.
The condition for negative real parts and hence for stability is

clearly
(1 —-2p)<0

Hence the line PP’ of the equation p = 1/2 1s the divide separating the roots
with negative real parts (stable singularities) from those with positive real
parts (unstable singularities). The former lie above that line; the latter,
below it. This completes the picture of the distribution of the various sin-
gularities in the (p,a)-plane. From [112.8] one has

2
at=i|/—‘:;—--(1—p)2

For @ = 0 the ordinate of the curve is glven by the equation

pS— 202 + p — A2 = 0 [113.4]
The condition for the reality of the three roots is A%< 4/27. For A? > 4/27,
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there exists one real root, and two conjugate complex roots which are of no
interest here.

For 0 < a? < a,%, where a, is the abscissa of the point of inter-
section of the curve [112.8] with the ellipse (1 - p)(1 - 3p) + a? = 0, Equa-
tion [112.8] has three roots of which only one is stable as can be seen from
Figure 113.1. For aqz < a® < + o, there exists only one unstable root. Hence,
only in the region 0 < a® < a,®> can the Van der Pol solution [111.4] approach
a stationary periodic solution with the heteroperiodic frequency w;, since
only in that interval does there exist a stable singularity so that the coef-
ficlents &, and b, in the Van der Pol equations {111.5] approach fixed values
as t > oo,

From Equations [112.2] it follows that the trajectories are directed
radially inward for sufficiently large values of r2%. Hence, if only one un-
stable singularity exists, we can assert by the Bendixson theorem that a limit
cycle exists and hence an autoperiodic oscillation w, beating with the exter-
nal frequency w,. Hence, whenever a? > a,%, which corresponds to the existence
of a single unstable singularity, the solution [111.4] of Van der Pol has
slowly varying coefficients &; and &, characterizing the heterodyning of the
two frequencies w, and w;. If, however, a® < a,®, one singularity is stable
with index +1, and the other two are unstable. No limit cycle exists in this
case, and the stable singularity gives rise to a stationary heteroperiodic os-
cillation, as previously mentioned.

The topological study of the trajectories of the Van der Pol equa-
tions [112.2] in the zone of entrainment can be pursued by constructing the
family of curves [112.8] for different values of the parameters with superim-
posed regions of distribution of the various singular points, as shown in Fig-
ure 113.1. A topological analysis of this kind was carried out by Gaponow (15)
on the basis of the general considerations of Chapter IV, where singularities
and limit cycles are considered as either
sources (if they are unstable) or sinks (if
they are stable) for the "flow" of trajec-
torles in the phase plane. Such an analysis

Unstable

Singularity gives some idea of the transient state of

the entrainment phenomenon under various
conditions. Without going into the details
of this analysls, since they have been giv-
en in Part I, it 1s sufficient to indicate
a few interesting results.

In pure entrainment, when only a
single stable singularity exists, the tra-
Figure 113.2 Jectories approach it in the usual manner
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depending on whether the singularity lies
in the reglon of stable nodal points or in
that of stable focal points. When one un-
stable singularity exists, in view of the
fact that for large values of r Equations
[112.2] indicate the inward flow of tra-
Jjectories, the Bendixson theorem indicates
that a stable 1limit cycle exists, as shown
in Figure 113.2., This condition, as was
Just mentioned, corresponds to the quasi-
periodic Van der Pol solution [111.4] when
heteroperiodic and autoperiodic frequen-
cies exist and no entrainment takes place.
According to the form of curves
[112.8] and the different location of the
regions of stability (or instability),
more complicated situations may arise, as was shown by Gaponow. Thus, for in-
stance, for certain values of the parameters resulting in a particular shape
of the curve [112.8] and for a certain range of a = 2(w, - w;)/c, one may have
three singular points, namely, a stable nodal point, a saddle point, and a
stable focal point. The flow of trajectories for this situation 1s shown in
Figure 113.3. Since there 1s a saddle point S, there also exists a separatrix
K formed in the neighborhood of S by the stable asymptotes of the saddle point
S. There 1s one singular trajectory SN issuing from S along 1ts unstable
asymptote and approaching the nodal point N. The focal point F 1is approached
by a singular trajectory issuing from the other unstable asymptote of S. At
a large distance from the singularities the trajectories are inwardly directed
as shown. Depending on the form of the separatrix, the trajectories may ap-
proach either the nodal point or the focal point. Thelr approach to the nodal
point will be aperiodic from a definite direction; their approach to the focal
point will be in the manner of a spiral, which indicates an osclllatory damped

Stable Nodal
Point

Saddle Point

Stable Focal
Point

K
Figure 113.3

motion.

Another possibility is the combination of a stable nodal point, a
saddle point, and an unstable focal point. This configuration is shown in
Figure 113.4. The separatrix forms a closed loop with the unstable focal
point in its interior. The trajectories arriving from distant points of the
phase plane approach the stable nodal point.

A number of other combinations are possible, particularly when two
singular points coalesce so as to form a singularity of a higher order. Here
the approach to the state of entrainment may be relatively complicated. This
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coalescence of singular points occurs
whenever the line ¢ = @, In Figure 113.1
becomes tangent to the curve of singular
points defined by Equation [112.8].

This transient state of the en-
trainment process can he studied oscillo-

Stable
Nodal
Point

graphically by analyzing the form of the
envelopes of the oscillations. When en-
trainment is reached (16), the envelope

Saddle Point

becomes a straight line.

114, STEADY STATE OF ENTRAINMENT

During entrainment the hetero-
periodic and the autoperiodic oscillations
become "locked," and the former imposes
its frequency on the latter. In the Van der Pol solution [111.4] the quanti-
tles &4; and b, then become constant and one can write

v = b;sinw;t + bycosw it = be + 82 [sinwlt cos¢ + coswltsinqs]

Unstable Focal
Point

Figure 113.4

b sin(w;t + @) [114.1]
where

bl . bl b2 b2

—e——— = L = cos¢; == = — = sing; b = Vb + b2
Vel + 62 b Vel + b7 b P

and where 6 is the ampllitude and ¢ the phase of the oscillation relative to
the externally applied voltage. One has

_bQ_ﬂ_l—p_(l—roz)a
tng = 3 = L= = = 50 [114.2]

where a and p are the coordinates of the stable singular point in the (p,a)-
plane. The amplitude b of the oscillation is

b= Vei + 0f = alul + 4 = V%% BYa* + (1 - o) = ’CV% [114.3]

where k =-§vu2 + (1 - p?) is a factor depending on the difference of frequen-
cles wy - w; and the ordinate p of the stable singular point. It is noted
that the quantity

o, = /4 & [114.4]

1s the amplitude of the generating solution of Poincaré; compare with Equation
[54.5]. It is thus seen that the autoperiodic amplitude a, is affected by the
entrainment factor k during the steady state of the phenomenon.
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115. ACOUSTIC ENTRAINMENT OF FREQUENCY

The preceding theory of entrainment was established in connection
with an electron-tube circuit where experimentation is relatively simple and
results can be established in terms of known parameters of the circuit and of
the electron tube.

As was mentioned in Section 110, the phenomenon of acoustlc entrain-
ment was discussed by Lord Rayleigh in his investigation on sound. More spe-
cifically, he says that if two orgén pipes of slightly different frequencies
are placed near each other, the beats disappear and both pipes oscillate at
the same frequency. Later he reproduced an analogous experiment with electrlc-
ally driven tuning forks of slightly different frequencies; the entrainment
effect is evident if the tuning forks are "coupled" by an acoustic resonator.

A recent study of this
effect was made by K. Theodorchik T A, A, M
and E. Chaikin (17) at the sug- —E— — o —
tion of Mandelstam and Papalexi.

Without going into details, it is
sufficient to mention briefly the C>/
experimental arrangement used.
Figure 115.1 shows an electron-
tube oscillator; in its anode cir-
cult a telephone T is inserted and
in its grid circuit a microphone
M. The telephone and the micro- ’hhh
phone are also coupled acoustic- Figure 115.1

ally by two armatures A; and A,

fixed to the same rod R. The rod is centralized by a spring and provided with
a damper which is not shown. The mechanical system ARA, is described by a
linear differential eqdétion of the second order having a frequency w. The
oscillator is a non-linear self-excited system with frequency w, on the limit
cycle. If the difference w - w, 1s appreciable, one finds that there are beats
in the system, indicating the presence of both frequencies w, and w. If the
value of this difference is decreased, one finds that both frequencles coa-
lesce into a single frequency w which corresponds to the external frequency
mentioned in Section 110. The "non-linear frequency" w, 1s thus entrained by
the external one w, and it is found that the ratio £—%% of the zone of en-
trainment is proportional to the ratio a/a, where a is the amplitude of the
oscillations of the mechanical system driven by the acoustic pressure emitted
by the telephone, and @, is the amplitude of the autoperiodic oscillation in

I
|

the electron-tube oscillator.
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This method has been ap.lied in measuring acoustlc intensity by ob-
serving the magnitude of the band of entrainment, knowing a,, and determining
the proportionality factor by calibration.

116. OTHER FORMS OF ENTRAINMENT

The phenomenon of entrainment, as we have already indicated, has im-
portant applications in problems in which it 1s desirable to obtain synchron-
ization of frequencies. For example, the problem of maintalning the speed of
an electric motor with a high degree of accuracy can be solved by synchroniz-
ing the motor's frequency with the standard frequency of a quartz oscillator,
which can be maintained with great accuracy. If such synchronization can be
obtained, the motor speed can be maintained with the same accuracy. In this
particular example, the frequency f, of the quartz oscillator is generally
many times greater than the rotational frequency f, of the motor. This diffi-
culty is eliminated, however, by a frequency-demultiplication network, which
permits obtaining a frequency f,/n if n is the demultiplication factor. The
problem then consists of "locking" the two frequencies f,/» and f, by some
kind of entrainment phenomenon. )

In the preceding sections of this chapter we have investigated the
phenomenon of entrainment starting from a particular circuit investigated by
Van der Pol. The non-linearlity in this circuit is due to the characteristic
of the tube which was approximated by retaining the cubic term in the repre-
sentation of the non-linear function 7, = f(e,) by a polynomial. For pfacti-
cal purposes, this type of entrainment is difficult to obtain because of the
small zone of entrainment and also because 1t is difficult to modify the char-
acteristic of an electron tube so as to produce more favorable conditions for
entrainment. In view of this, numerous schemes have recently been developed
in which the zone of entrainment is artificially made large by suitable cir-
cuits. In this manner one obtains a kind of artificially produced entrainment
which is more adequate for practical purposes than the simple type investi-
gated by Van der Pol.

As an 1llustration we shall investigate one such scheme suggested by
Kaden (18) and shown in Figure 116.1. We shall omit the mathematical analysis
of the circult, since it follows the argument previously explained, and will
give only an elementary explanation of its behavior. The electron tube V,
operates as an oscillator with frequency w; having C; and L, as its oscillat-
ing circuit. The coefficient of inductance L; can be varied within certain
limits because the coll L; is wound on an iron core whose state of magnetic
saturation can be varied by changing the direct current ¢ flowing through the
coll G wound on the middle leg of the magnetic circuit M as shown. There are
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D

M

Figure 116.1

two other coils: K,, which produces a feed-back voltage to the grid of.V1
which merely maintains the oscillation with frequency w,, and the coil K,
transmitting the oscillation at that frequency to the second tube V, working
as an amplifier. The output of V, through a transformer is coupled with the
branch AB of the synchronizing network K. The network K also has a second
branch CD into which the external frequency w, is inductively transferred.
The synchronizing network BACD is closed on a bridge N formed by rectifying
elements; the direction of rectification is shown by the arrows. The diagonal
points of the bridge N are closed on the saturation coil G of the iron-core
reactor. In the circuit BACD there are two induced voltages: E; with fre-
quency w; induced in the AB-branch, and E, with frequency w; induced in the
CD-branch. We shall consider the case when the difference w, - w, = Aw 1s
small. The vector diagram is shown in Figure 116.2; the vector E, can be
assumed to be fixed; E, rotates with frequency Aw in one

direction or the other, depending on the sign of the dif- 0

ference w, - w,. The resultant vector E, is the voltage ‘\C
between B and D and, to a certain scale, it represents
the rectified current { flowing through the coil G.

The frequency w, = 1/VL,(7)C;where L,(¢) 1is a
non-linear function of 7 decreasing with increasing <.
It is apparent that, if w, # w,;, one has the relation

¢ _
dt

Assume, for instance, that initlally Aw > O,
which means that the extraneous frequency w, is greater
than the frequency w; of the oscillator. In the vector Figure 116.2

w, — w; = Aw [116.1]
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diagram, the vector E, rotates in the direction of the arrow A, that is,
towards the advance, around the end of E, as center. The resultant E, in-
creases, and, as with the rectifier-bridge arrangement shown, the current <
1s proportional to E,. The current will also increase so that L,(7) will be
reduced. This accounts for an increase of the oscillator's frequency w; un-
til it becomes equal to w,. The equilibrium point )

dé _

= Wm0 =0 [116.2]

is stable. This can be shown easlly by repeating the argument for w, < w,
provided ¢ is contained between O and n. Thus, depending on the adjustment
of the circuits, there is always an equilibrium phase angle ¢, (0 < ¢, < =)
for which [116.2] holds; that is, entrainment of the frequency w; by the ex-
ternal frequency w, is artificially produced.

If the frequencies w, and w, are far apart, the vector E, rotates
rapidly with respect to the fixed vector E;, and in view of the finite time
constanfs of the circuits the magnetic saturation control may not be suffi-
clently rapid to adjust the frequency w; so as to "lock" it in synchronism
with the frequency w,. One would then have beats due to the existence of
both frequencies w; and w,.

In the example given here the entrainment phenomenon i1s possible
because of the non-linearity of the parameter L,(¢). If the parameter L,
were constant, that is, in the absence of the saturable iron core, it would
be impossible to obtain the synchronization of the two frequencies w; and w,,
and the zone of entrainment would be absent.



CHAPTER XIX

PARAMETRIC EXCITATION

117. HETEROPARAMETRIC AND AUTOPARAMETRIC EXCITATION

In Section 99 it was shown that it is possible to obtain self-
excitation of subharmonic oscillations by varying periodically a parameter
of the system. In this chapter we shall investigate this phenomenon, called
parametric excitation, from a somewhat different point of view and will in-
troduce certain generalizations. .

It is noteworthy that the phenomenon of parametric excitation has
been known for many years. Thus, for example, Lord Rayleigh describes in
Reference (10) an old experiment of Melde (19) which he reproduces and ana-
lyzes. 1In this experiment a stretched string is attached to a prong of a
tuning fork vibrating in the direction of the string; it 1s observed that
periodic variations of frequency f in the string's tension account for the
appearance of transverse vibrations of the string with a frequency of f/2.
Later, M. Brillouin (20) and H. Poincaré (21) investigated a similar effect
in electric circuits. Quite recently certain Russian physicists under the
leadership of Mandelstam and Papalexi (22) investigated these phenomena in
greater detail; we propose to give a brief outline of these researches.

It is useful to define two types of parametric excitation, hetero-
parametric and autoparametric. In heteroparametric excitation, self-excitation
is caused by the variation of a parameter expressed as an explicit function
of time. In autoparametric excitation the variation of the parameter depends
directly on some physical quantity and thus is an implicit periodic function
of time.

The vibrations of the string in Lord Rayleigh's experiment are
clearly heteroparametric in that the variation of the parameter is produced
by a tuning fork having a definite frequency. Parametric excitation occurs
here with a frequency equal to one-half the external frequency of the tuning
fork. The same remark applies to the circuit described in Section 99 where
the capacity 1s modulated as an explicit function of time.

On the other hand, as has been shown on numerous occasions, self-
excitation of electron-tube circuits can be traced to the fluctuating trans-
conductance of the tube caused by the oscillatory process itself. 1In all
electron-tube circuits the periodic variation of the parameter, the trans-
conductance, appears as an explicit function of the physical quantity which
characterizes the process, for instance, the grid voltage, and depends only
implicitly on time. Self-excitation of electron-tube circuits therefore be-
longs to the autoparametric type. The concept of autoparametric excitation
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is not particularly interesting because most excitations of the autoparamet-
ric type can be treated by the standard metHod of Poincaré€.

With heteroparametric excltation, however, the situation is differ-
ent. Since one or several parameters of the system appear as explicit period-
ic functions of time, the problem is reduced to the solution of differential
equations with periodic coefficients, that is, equations of the Mathieu-Hill
type; more specifically, the condition of self-excitation of the system is
equivalent to the existence of unstable solutions of such equations, which
means that an initially small departure increases because of the periodic var-
lation of a parameter.

It must be noted that, although the theory of the Mathieu-Hill equa-
tion is necessary for the establishment of the conditions of heteroperiodic
excitation, there 1is nothing in that theory which would permit determining the
amplitude of the ultimate steady state. This difficulty arises from the fact
that the known types of Mathlieu-Hill equations are [linear equations and, as
such, possess unstable solutions increasing indefinitely in their unstable
region. In order to establish a theory of heteroparametric excitation ap-
proaching,a definite steady state, one should apply some kind of non-linear
differential equation with periodic coefficients. Unfortunately, no theory
involving non-linear equations with periodic coefficients exists at present.

These theoretical difficulties 1limit a further analysis of hetero-
parametric excitation. It is interesting to note that Mandelstam and Papalexi,
who developed a heteroparametric generator, an electric machine described in
Section 124, were able to demonstrate that, in the absence of non-linearities
in the circuit, the voltage builds up indefinitely until the insulation is
punctured. On the contrary, by providing a non-linear element in the circuit,
the voltage builds up to a finite value, and the generator functions in a sta-
ble manner. In spite of these theoretical limitations, equations with period-
ic coefficients can be used to determine the conditions of heteroparametric
excltation in a general manner, as will be shown.

118. DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS
Consider a differential equation with periodic coefficients (23)

Z+ 2p(t)z +qt)z =0 [118.1]

where p(t) = p(t + 2m) and ¢(t) = ¢(¢t + 27). If we introduce a new variable
2 defined by the equation

2 = go I [118.2)

Equation [118.1] becomes
I+ Mtx =0 [118.3]

where M(t) = ¢ - p*> - p 1s a periodic function.
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In practice one frequently encounters the following expressions for
M(t): '
1. M(t) = w,® + a,% cos kt, in which case Equation [118.3] is called
the Mathieu equation, or
2. M(t) is a Fourier series, w, + A, cos kt + A, cos 2kt + -+- +
B, sin kt + B, sin 2kt + --- , in which case [118.3] is called the Hill
equation.
Since the theory of the Hill equation is similar to that of the
Mathieu equation, it 1s sufficient to consider the latter. The Mathleu
equation
i+ (wy> + aglcoskT)z =0 [118.4]
by a change of the independent variable ¢ = k7 can be reduced to the form
7 + (w2 + a2cost)x =0 [118.5]

where wk = w, and ak = a,. The essential feature of the Mathieu equation
(118.5] 1s that, although the function M(¢) = w? + a® cos ¢ 1s periodic, its
solutions are not necessarily periodie although under certain conditions they
may be periodic. If they are periodic, the solutions are given in terms of

. the so-called Mathieu functions (23). Since Equation [118.5] is linear, one
can assert that, if one knows two particular solutions f; and f, forming a
fundamental system, the general solution will be of the form

F=A/f +Af, [118.6]
where A, and A, are arbitrary constants. Moreover, since f,(¢ + 2x) and

fo(t + 2m) are also solutions, one can express them in terms of f,(¢) and
fy(t) by equations of the form

A+ 27) = afi(t) + bfip(2)
[118.7]
fo(t + 2m) = cf (¢) + dfy(t)

From [118.6] one has also
F(t+2m)=A,f,(t + 27 + A, f, (¢t + 27) [118.8]
From the theorem of Floquet (24) we know that there is a solution F such that
F(t+2m)=Af{(t + 2m) + A, f,(t + 2m) = oF(t) (118.9]
If we select the following initial conditions,
£0) =0, fi0O)=1 f0) =1 £, =0 [118.10]
we observe that the Wronskilan

L) £,0
+ 0

£O) 70
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and thus the system of solutions f; and f, 1s fundamental. From Equations
[118.7] one gets for ¢ = 0

fi@m =b; flem) =d; f@m=a f2m)=c (118.11]
From [118.9] one obtains
F(t 4+ 2n) = A (af, + bfy)) + A,(cf, + df,) [118.12]
Since j} and f, are the solutions of [118.5], clearly
U+ M@, =0 f+ MQ@f, =0
whence f,"/f, = f,'/f, and, therefore, f,"f, - f, f; = 0, that is,
fl'f2 — f,f; = h = constant [118.13]
The value of h is
b= £0£0) = 00,0 = f@mf2r) — £ @mf,(2m) [118.14]
which, by [118.10] and [118.11], becomes
1=ad — be (118.15]

From Equations [118.9] and [118.12] in view of the initial conditions [118.11]

one gets
A(a—0) +A,e =0

[118.16]
Ab + Ad - 0)=0

Thus, in view of [118.15], the condition for the non-trivial solution of the
system [118.16] is

02—(q+d)a+(ad—bc) = —~(a+do+1=0 [118.17]

The roots of the characteristic equation [118.17] are

atd a+dy a+d . (@ + d)
i 2 - ( 2 ) 1 T 1 [118.18]
If a+d _
we put 7 = cos 2mu, this equation becomes
01,2 = €08 277” i ]Sin27r;1 = eijz## [1.‘8.19]

If Q—%ii <1, cuos 2mu is real; hence, u is also real, and ¢ is complex with
modulus equal to one. This characterizes stability, both of equilibrium and
of the stationary motion, from the very definition of ¢, Equation [118.9].
If Q—%ii > 1, p is imaginary; hence, ¢ is real, and there is a root greater
than one which indicates instability. If-g—%li =1, u =0, and hence ¢ = 1;
this should be considered as the beginning of the unstable range of the

Mathieu equation.
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Taking into account the values [118.11], one can write

cos 2y = %(a + d) = %[f1l(2") + fy(2m) [118.20]

119. STABLE AND UNSTABLE REGIONS OF THE MATHIEU EQUATION

Let f = cos vyt and ¢ = %-sin yt be a pair of fundamental solutions
in the interval 0 < ¢t < 7 with initial conditions f(0) = 1, ¢(0) = 0,
f'(0) = 0, and ¢'(0) = 1, and let

g(t) = Csindt + Dcosdt; h(t) = Esindt + Feosdt [(119.1]

be a pair of fundamental solutions in the interval w £ ¢ = 2m, where vy =
VwZ+ af and 6 = Yw? - a?. Fitting these functions together at t = m, we
obtain .
f(m) = g(m) or cosymr = Csindmr + Dcosdnm

fr)=g'(x) or — ysinymr = Cdcosdm — D¢ sin drm

119.2
é(m) = h(mx) or %sinyrr = Esindmr + F cosdm [119.2]

@¢'(m) = K'(m) or cosym = Eécosdmr — Fdsiném

From these equations we can determine the four constants A, B, C,
and D and thus determine

cos 2my = f@n) ‘; @ (2m) _ g(2m) -|2- h (2m) (119.3]

One finds that for w?> a® > 0,

cos 27y = cosmy cosm — %(% + %)sinﬂ'ysinﬂd [119.4]
and for w?< a?,
. 1 /vy n\ . .
cos 27ty = cosmy coshmny — — (— — — sin 7y sinh 7y [119.5]
2\n 4
where n = Ya? - w?.

From these equations one may plot curves in the (wz,az)—plane which
are the boundaries between the regions of unstable motion (shown in white in
Figure 119.1) and of stable motion (shown by shading). This discussion 1is
taken from an article by Van der Pol and Strutt (25). These authors discuss
the character of the stable and unstable regions for various values of the two
parameters «? and w? and derive the following conclusions:

1. The unstable regions cover a larger area than the stable ones.

2. Below the 45-degree line in the first quadrant the motion is, in gen-
eral, stable. Here a? < w?, the stepwise "ripple" appearing in Figure 119.1
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does not touch the zero line, and the coefficient of x in the Mathieu equa-
tion remains positive. Thus, without the ripple, one would always have stable
motion. Under certain conditions the ripple renders the motion unstable.

3. Above and to the left of the 45-degree line the motion is generally
unstable; the stable areas which exist are relatively small. Without the
ripple the motion 1s unstable in this region so that the ripple under certain
conditions transforms the instability into stability.

The last conclusion i1s illustrated experimentally by a reversed pen-
dulum whose support undergoes a periodie vertical motion. It is found that,
for a certain band of frequencies and for a certain amplitude of the motion
of the support in the vertical direction, the unstable pendulum exhibits
stability.

In what follows we shall be interested particularly in the unstable
solutions of differential equations with periodic coefficients and will extend
the discussion a little further to ascertain whether self-excitation will ex-
ist under various conditions of frequency and phase of the ripple relative to
the fundamental oscillation of the system.

Instead of following the analytical argument of Van der Pol and
Strutt, we will investigate the behavior- of the phase trajectories, which will
enable us to gain a more intuitive understanding of the phenomenon of hetero-
parametric excitation.
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120. PHYSICAL NATURE OF SOLUTIONS

From the preceding analysis it follows that in certaln regions of
the (w?,a?)-plane the solutions of the Mathieu-Hill equation are unstable.
These regions of instability have not as yet been explored to any extent be-
cause the aim of previous analytical studies has been the establishment of
conditions of stabllity which resulted in the Mathieu functions, with which
we are not concerned here. On the contrary, for parametric self-excitation,
in which we are interested here, the unstable regions present greater inter-
est. Although by introducing the Mathieu-Hill equation we lose the familiar
ground of the theory of Poincaré, that is, it is impossible to eliminate time
between the two differential equations of the first order, the procedure is
more direct, as will be shown. The main limitation of this method, as was
already mentioned, is the fact that since the Mathieu-Hill equation 1s 1lin-
ear, there is no indication whatever as to how the gradually increasing os-
cillations of the unstable region reach a steady state. To determine this it
would be necessary to investigate a non-linear equation of the Mathieu-Hill
type, but, as we pointed out, no theory of such equations exists at present.
Since we are unable to proceed analytically with a non-linear Mathieu-Hill
equation, it 1s still possible to form a certain physical idea as to what
happens in the unstable region of solutions of this equation by the follow-
ing argument of Mandelstam.

Assume that we have a non-dissipative oscillating circuit with a
capacity which varies periodically between the two limits C,,, and C.,. Let
the capacitor have initially, that is, when ¢ = 0, a certain charge ¢; the
circuit has no current. Since there is no essential difference between the
solutions of the Mathleu equation and those of the Hill equation with the
function

2y 4 2 _1 1 .
M) = w° + o (cost 3 cos 3t + 5cos5t ) [120.1]

representing a rectangular ripple, see Section 119, we can adopt the argument
of Van der Pol and Strutt and consider abrupt variations of capacity from
Crax %0 Coin» and vice versa, occurring periodically.

Assume, therefore, that for ¢ = O the capacity is suddenly decreased
by AC = Cax - Cumin - Since the whole energy stored in the circult 1s purely
electrostatic, it 1s apparent that the impulsive work done during this sudden
decrease of capacity is

AC

902 7
This amount of energy is thus added to the initial weak electrostatic energy
existing in the capacitor prior to the instant ¢ = 0. The capacitor will then
begin to discharge through the circuit and a current will appear. Assume now

[120.2]
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that one-quarter period later, when the capacitor is totally discharged and
the energy is entirely electromagnetic (Li%/Z), we restore abruptly the orig-
inal value of the capacity C,,, by glving the increment +AC to the capacity.
In so doing no work will be performed since the electrostatic energy 1s zero
at this instant. However, from the fact that during the preceding operation
the electrostatic and, hence, the total energy of the system has received an
‘increment f%%q% it is apparent that it is still present in the system which
has been assumed to be conservative. If one-quarter period later we repeat
the procedure made at ¢ = 0, that is, reduce the capacity by the amount AC,
another increment of the electrostatic energy will be added, and so on for
subsequent abrupt changes AC of capacity occurring periodically every quarter
period of the circuit. It 1s thus seen that energy is injected into the sys-
tem periodically at the instants ¢ = 2n%; n being an integer, when the capac-
ity is suddenly changed by the amount - AC; the restoration of the capacity
(+ AC) to its maximum value occurs at the instants ¢ = (2n + 1)%7without in-
volving any work. It 1s observed that the period of variation of the capac-
ity 1s one-half the period of the free oscillatory phenomenon.

The argument remains the same if, instead of capacity variations,
inductance variations t AL are used. The timing of the ripple for inductance
variations 1is exactly the same as for capacity variations, namely, the coeffi-
clent of the inductance is-decreased (- AL) at the instants 0, 7/2, --+ , and
increased (+ AL) at the instants T/4, 3T/4, .- . To the same timing, how-
ever, there will correspond a diametrically opposite effect, that 1s, at the
instants T/4, 3T/4, --- , when L is increased, there will be an addition of
energy since the whole energy is electromagnetic at these instants; whereas
at 0, T/2, -+ , when L is decreased, no work will be done since the electro-
magnetic energy is zero.

121. TOPOLOGY OF THE HILL-MEISSNER EQUATION

The Hill equation with the rectangular ripple expressed by Equation
{120.1] was used by Meissner in his analysis of vibrations arising in driving
rods of electric locomotives (26) and was found useful by other investigators
(25). Very frequently this particular form of Hill's equation is designated
as the Hill-Meissner equation; we wlll inquire further into the nature of its
solutions. The usefulness of the Hill-Meissner equation lies in the particu-
lar form of its periodic coefficient, the ripple, which permits a simple dis-
cusslion of its trajectories in the phase plane. It is apparent that the
trajectories of the Hill-Meissner equation differ somewhat from those of the
Mathieu equation, but 1t is likely that, at least qualitatively, there 1is not
much difference between the shapes of integral curves for both equations, as
was pointed out by Strutt (27) and as follows from experimental evidence. It
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is to be understood, however, that no direct quantitative comparison of the
unstable solutions of equations of both types has been attempted so far, and
‘the above assumption seems to be a plausible hypothesis convenient for a qual-
itative analysis of the phenomenon.
With these remarks in mind, we shall write the Hill-Melssner equa-
tion in the form ,
' i+ @t =0 , [(121.1]

which means that we consider alternately the two equations
i+ (a® + %)z = 0; i+ (a* =0z =0 [121.2]

during each half period = of the ripple, with the understanding that the solu-
tions have to be continuous on physical grounds although not necessarily ana-
lytic at the points at which the changes from (a® + 8%) to (a? - 2), or vice
versa, occur. We will assume that a? > b? inasmuch as we will be concerned
with the problem of modulation of the duantity a® by a rectangular ripple * b2

We will now elaborate somewhat the example of heteroparametric ex-
citation discussed in the preceding section and write the differential equa-
tion of the non-dissipative circuit in the form

dgq 1
where L, is the inductance, C is the capacity, and ¢ is the quantity of elec-
tricity stored in the capacitor. Let us assume that the capacity C varies

between Cpa = Co + AC and Cpyn = Co - AC in a stepwise manner. The preceding

L

equation can then be written as
P S— - 0 (121 .4]
TTLCaE ! :
where y, = AC/C, is the index of the stepwise modulation. If 1/LoCo = wo® and
if we assume that y, << 1, without any loss of generallty Equation (121.4]
becomes
i+ 0 F yelg=0 [121.5]
This equation, as was Just explained, should be considered as an alternate
sequence of the two equations
§+ 0+ pelg =0 G+ 01— nwig=0 [121.6]
A trivial change of the independent variable ¢ = -r/w0 transforms these equa-
tions into the form
42 d2
ET—qZ+o¢12q=0; a—_’_—g+o¢22q=0 (121.7]

where «,> =1 + 7, and @, = 1 - y,. The two equations replace each other at
the "frequency" of the ripple * AC.
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Since no confusion is to be feared,
d . .
“g% we shall designate by ¢ and ¢ the derivatives

n with respect to the new variable 7, the angu-
8 lar time. ’
Let us transfer the problem into
l 2' the phase plane of the variables ¢ and ¢.

O —

w1

oy

o - A The solutions ¢(7) will then be represented
by the integral curves, or phase trajecto-
ries, of Equations [121.7], and the dynamical
process described by these equations will be
represented by the motion of the representa-
tive poknt on these trajectories; see Part I.
Figure 121.1 For y, = 0 and &2 = a,? = 1, the
trajectories of Equations [121.7] form a con-
tinuous family Iy of concentric circles with the origin as center. If Y, # 0,
the trajectories form continuous families Iy and I, of concentric homothetic
ellipses shown in Figure 121.1. The family I, corresponding to af > 1 has a
constant ratio b/a = a,z =1+ y, of semiaxes; the family I, has a ratio
b'/a = ag? = 1 - y,. The family I, corresponds to the reduced value Co - AC
of the capacity and I, to the increased value C, + AC. The origin O is the
.singular point of Equations [121.7]. The two families I'y and I'y thus serve
as a kind of reference system determining the motion in the phase plane. For
example, if for ¢ = O certain initial conditions, say (g¢,,0), are given and the
value of C 1is prescribed, for example, C = C, - AC, the process 1s depicted by
the motion starting from the point A corresponding to the initial conditions
and moving along the ellipse of the family I, passing through A. If at a later
instant ¢ = ¢,, corresponding to the point B on the ellipse, the capacity is
changed and is then C = Cy + AC, the representative point will pass onto the
elliptic trajectory belonging to the family I, passing through B and will
continue to move on that trajectory until the next change (C = C, - AC), and
S0 on.

le—a

This representation of the solutions g¢(7) of Equations [121.7] by
phase trajectories is a convenient way of ascertaining the various circum-
stances of heteroparametric self-excitation. As an example, let us consider
self-excitation when a capacity ripple, discussed in Section 120, is present.
. Let us start from a point A(g¢,,0), see Figure 121.2, after the capacity has
been reduced (C = Cy - AC). The representative point will move on the arc AB
of the elliptic trajectory of the family Iy. At the point B (¢ = 0, ¢ = max)
the capacity is increased (C = Cy + AC), and the arc BC of the family r, is
followed. At the point C the capacity 1is reduced, and the next arc CD is of
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the family I, and so on. After a
period 2w one reaches the point E !
corresponding to ¢, > ¢, which B
shows that the energy content of ‘
the system has been increased. 8
It must be noted that 4
the phenomenon is reversible; in
fact, if we replace the words
"capacity is decreased" by "capac-
ity is increased," and vice versa,
in the argument of Section 120, it
is apparent that instead of adding
energy by capacity variations, en-
ergy will be withdrawn by these Figure 121.2
variations. Physically this means
that, instead of injecting energy into the system by providing external impul-
sive work which will overcome the electrostatic forces, energy will be with-
drawn because the electrostatic forces will do the impulsive work and will
thus diminish the energy content of the system. This situation 1s shown by
the trajectory AB'C’--- in Figure 121.2. 1If, starting from the point A, as
before, the capaclty is increased (+ AC), at B’ decreased, at C' increased,
and so on, a convergent spiral will result which represents withdrawal of

energy.

In this example the trajectories are spirals made up of elliptic
arcs; these spirals have continuous tangents at every point, although there
are discontinuities in the curvature at the points B, C, D, E, -+ , at which
the changes of capacity occur. In other words the trajectories of the Hill-
Meissner equation with which we are concerned here are priecewise analytic
curves, possessing continuous first derivatives but discontinuous second de-
rivatives at points where a loss of analyticity occurs. In a more general
case analyzed in the following section the piecewise analytic trajectories
may have discontinuous first derivatives at certain points.

122. DEPENDENCE OF HETEROPARAMETRIC EXCITATION ON FREQUENCY
AND PHASE OF THE PARAMETER VARIATION

In the preceding section we studied a special case in which the dis-
continuous changes in the rectangular ripple occurred at the instants when the
representative point crossed the coordinate axes of the (z,z)-plane and the
frequency of the ripple was twice that of the circuit. This case, which is
the one studied by the early investigators, is also the one most frequently
encountered in practice. We will now outline a more general method of approach
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to this problem by considering different

dq
/gf?r relative frequencies and phase angles of
N,” P FZM the ripple with respect to the oscillatory
E! ﬁ ‘];\\ process in the circuit.
LA N For this purpose we shall extend
p ! ? _} somewhat the study of the preceding section.
04_00‘,1‘\ ¢ The radius vector r of a phase trajectory
9, of the family Iy, for example, is given by
the equation ‘
Figure 122.1 r = %o [122.1]

1 .
l/c052¢ + o2 Sin @

1

where ¢ is the angle of the radlus vector; a, = OA, the semiaxis on the z-
axis; and &> = 1 + y, as before. If the change of capacity occurs at some
point M, see Figure 122.1, whose coordinates are z, = r, cos ¢, and y, =
r; sin ¢1, where r, corresponds to the angle ¢,, the arc of the family I, cor-
responding to C = C;, + AC will begin at the point M and will continue to the
point N(r,,®,) at which a change of capacity from Cy, + AC to C, - AC occurs
and a new arc NP of the family Iy will be traversed. If we start from a given
point of the phase plane and assume a particular subdivision of angles bo - P15
$s - 5, ++- , it can be shohn (28) that the subsequent major semiaxes al,'az,

of the elliptic trajectories can be calculated by an elementary recur-
rence procedure. Thus, for' example, starting from the point A in Figure
122.7, one obtains after N changes of capacity the following expressions for
the major semiaxis ay:

f1f3"'f2 1
ay = a, = aq————2=1, [122.2]
v 2 0 f2f4"'f2u
a, [y Saeg
a Gy, ,, = ay—* (122.3]
N 2y +1 ,00‘2 fofi e o

where

> + tan’g,
£(8) = |/:§—+$—% [122.4]
1 P

From the properties of the functions f;(¢;) it 1s apparent that
[@) = f(=¢) = f(8, + 7)) = f(—9, + m) [122.5]

The only case of practical interest 1s that in which all intervals are equal
and are fractions of 2kw, where k is an integer. We shall call the intervals
in this mode of subdivision the equiphase intervals inasmuch as the phase
plane is divided into equal sectors. If N is the number of changes of capac-
ity in one period (2m) of the process, the phase angles for N = 4 will be
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Figure 122.2

$or b = B+ 5 By = B +-2—2", b, = %, +-32£, and ¢, = ¢,. We may call ¢, the
phase angle of the ripple and the number N the relative frequency of the rip-
ple. Figure 122.2 shows the relative position of the ripple, with N= 4 and
a certain arbitrary angle ¢,, with respect to the free oscillation of the
system.

It is to be noted that in a more detailed investigation of this
phenomenon one has to take into account the fact that the equiphase intervals
are not equitime intervals, that is, intervals of equal time, because of the
non-uniformity of the motion of the representative point on the elliptic tra-
jectories. Although this circumstance can be taken into account by defining
certain functions g,(¢;) similar to the functions f,(@;) just introduced, we
shall not elaborate on this subject here but will investigate the principal
features of heteroparametric excitation on the basls of the equiphase inter-
vals. There is sufficient justification for this because in the most impor-
tant practical cases, when the changes of capacity occur on the coordinate
axes of the phase diagram, both types of intervals coincide; when'they do
not, the introduction of equitime intervals, while complicating the calcula-
tions somewhat, does not change the qualitative aspect of the phenomenon of
heteroparametric excitation.

It is convenient to consider the following four groups of numbers N,
1. N = by; 2. N= (2v + 1)2; 3, N=2v+ 1; 4. N =p/q, where
vy=1,2,3, -+ , and p and ¢ are relatively prime. In the first three
groups N is an integer, and in the last it 1s a rational fraction. This
covers all cases of practical interest.

1. First group: N =4, 8, 12, *--

Let us consider the first case, N = 4, which has previously been
studied by an elementary method. We shall now apply the general method in-
volving the use of the functions f;(¢,). The intervals are clearly ¢,, ¢, =
o +-g, b, = 9y +-%§, b = & +-%§, and ¢, = ¢,. By the properties [122.5]
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of the functions f;(¢;) 1t 1s apparent that

B A fO = f2 = f;; fl = f3
whence, by Equation [122.2] we have
hts £
a, = a, = 0,7 [122.6]
6 AN

It is evlident that the condition for a heteropara-
metric excitation 1s a, > a@,, that is,

Figure 122.3 1}2
If we substitute for f, and f, their values from

Equation [122.4], it 1is easy to discuss the conditions for self-excitation of
the heteroparametric oscillations. We will omit these elementary calculations
and merely indicate the conclusions. The zones of the phase angle ¢, in which
self-excitation occurs are located within the shaded sectors shown in Figure
122.3. In the non-shaded sectors, self-excitation does not occur. The lines
AC and BD form the critical phase angles ¢, for which self-excitation appears
or disappears. The maximum increase of the amplitudes per c¢ycle occurs for
¢, = 0 and ¢, = n. For these values of ¢, one has the relation

2
o 1+ y
aQ = — Q. = a [122'7]
4 a; U

2. Second group: N =6, 10, 14, 18,

Consider, for instance, the case when N= 6. By Equation [122.2]

—_ flf3f5

T RIS

27476

and, for the intervals in question, f, = f; = f;, f, = f;, and f, = f5, which

shows that a4 = a, for all values of ¢,. Hence, for this particular frequency
of the ripple, parametric excitation is impossible.

[122.8]

3. Third group: N=3, 5,7, 9,

Let us take the case N= 3. Since N is odd, we apply Equation
[122.3] and obtain
0‘1 f1f3
fy
From the form of the subdivisions and from Equation [122.5], f, = f,. Hence,
the condition for self-excitation will be
oy St

o, f,

a =Qq,
3 0
a,

v
[

(122.9]
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By introducing for f,, f,, and f, their values from Equatlons [122.4] and
carrying out the calculations, one finds that no self-excitation 1s possible
in this case.

4. Fourth group: N = p/q

One easlly ascertains that as far as self-excltatlon is concerned
most fractions p/q are either of no interest or fall within the scope of the
groups previously investigated. The only cases in which heteroparametric ex-
citation occurs are those in which N= 4/3, 4/5, 4/7, -+ ; 8/3, 8/5, -+,
corresponding to the intervals A¢ = 3n/2, 5m/2, Tn/2, --+ , which fall into
the first group.

123. HETEROPARAMETRIC EXCITATION OF A DISSIPATIVE SYSTEM

If a system is dissipative, it is apparent that the injection of
energy communicated by the variation of a parameter must, on the average,
exceed the energy dissipated by the system. This, as we shall see, will lead
to an additional condition.

Let us consider the equation

L,g + Ryq + %q=0 [123.1]

of a dissipative electric circuit in which we assume that the capacity C is
modulated by a ripple * AC so that C = C, £ AC.
If we divide by L, and put R,/L, = 2p, and

7212?%3?7ZT = wil Fy)
Equation [123.1] becomes
g+ 2p0 +w 1 F p)g=0 [123.2]
When the new variable @ defined by the equation
g = Qe /o | [123.3]
is introduced, Equation [123.2] becomes
Q+ w1 FoHQ=0 [123.4]
Changing the independent variable from ¢ to T = w;t, one obtains
%;Qz +(1FaQ=0 (123.5]

- As mentioned previously, this equation is equivalent to the alter-
nate sequence of the following two equations replacing each other at each
discontinuous change of capacity:
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Q. a%Q .
where
(d2 2 (4)2
af =1+6=1+ "%y, af=1-6=1- 2, (123.7]
W, Wy e

The plus sign in the first equation [123.7] corresponds to C = C, - AC. Equa-
tions [123.6) have the same form as Equations [121.7], so that the conclusions
reached for those equations are applicable here except that Equations [123.6]
contain the dependent variable @ whereas Equations [121.7] contain the vari-
able ¢; the two variables are related by Equation [123.3]. The trajectories
of Equations [123.6) are either convergent or divergent piecewise analytic
spirals formed by elliptic arcs, the closed trajectories, appearing as a
threshold between the two forms of spirals. For a closed trajectory @ is
bounded; hence, by [123.3] ¢ decreases monotonically. This means that con-
vergent spirals in the (q,gg)-plane correspond to the closed trajectories in
the (Q,ggb-plane so that no self-excitation is possible. It is obvious that
in order to have parametric excitation, the amplitude ¢ must inerease mono-
tonically, or at least be constant, which requires that

Q = @t/ [123.8]

where p, 2 p,. This means that the trajectories in the (Qfggb-plane must be
divergent spirals with the absolute value of the average negative decrement
lp1| greater than, or at least equal to, the positive decrement P, =.R0/2Lo
of the dissipative circuit (R, L,,C,). Physically this means precisely the
condition stated at the beginning of this section, namely, the energy injec-
tions into the circuit by the ripple t AC must, on the average, be greater
than the energy dissipation.

On the other hand, since for a dissipative circult with constant
parameters (R, L,,C,) the decrement is p, = R,/2L,, the ratio of the ampli-
tudes after one turn 27 in the phase plane is
e [123.9]
In the optimum case of parametric excitation (N=4, ¢, = 0), from Equation
[122.7] one has

9on 0‘_1 _ _tp2nm
0] e
' o,
which defines the increment
1 a2
p= gplog s [123.10]
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Expressing the condition for parametric excitation, namely, p, 2 p,, and sub-
stituting for «’, a,%, and p, their values, one gets

2 2 Hy
wy — P, e —1
w,? et + 1

=y [123.11]
where p, = mR,/L,w,. Since a,® and a,’ are to be positive and e,®> a,”, one
obtains the other limit for y.. This gives

VE——F5 =7 (123.12]

y sy 9" [123.13]

in order to obtain heteroparametric excitation. When R, = 0, we have u, = 0
and p, = O which gives the interval (0,1). This interval decreases when R,
increases and becomes zero when w,? - p, = w,° = 0, that is, when R, =
2VL,/C,. The last expression is the condition for critical damping. It is
therefore impossible to obtain parametric excitation of a critically damped,
or overdamped, circuit.

As was previously mentioned, heteroparametric excitation can be
obtained by a variable inductance, instead of a varlable capacity. For a
non-dissipative circuit the conditions of heteroparametric excitation are
identical except for the phase of energy injections, as was mentioned at the
end of Section 120. This similarity in the effects resulting from the vari-
ation of capacity and inductance arises from the fact that both these factors
enter symmetrically into the expression w,® = 1/L,C, ‘for the frequency.

For a dissipative circuilt the situation 1s different in that the
capacity enters only into the expression for the damped frequency w12 = W,
- p,®> (through w,?) and does not appear in the decrement p, = R,/2L,. The
inductance L, appears both in the expressions for the frequency and for the
decrement. Hence, a priori, one may expect different results in both cases.

One can develop the theory of inductance modulation in exactly the
same manner in which we have outlined the effect of capacity modulation. The
only difference lies in the fact that for the inductance ripple instead of an
interval in which the index of modulation y, must remain in order to obtain
self-excitation, the condition for self-excitatlon is given by an inequality.
It is also noteworthy that in the preceding discussions 1t was assumed that
y << 1, which enabled us to simplify the expressions by‘writing 7 l >
By waiving this restriction, the calculations are corisiderably more compli-
cated but the qualitative picture of the phenomenon remains substantially the

2

=1 -y,

same.
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124, HETEROPARAMETRIC MACHINE OF MANDELSTAM AND PAPALEXI
A differential equation with perilodic coefficients of the form

L)2 + Ri)z + C(t)x = 0 [124.1]

can be reduced to an equation of the Mathieu-Hill type. It follows that the
effect of a parametric excitation can be obtained by periodically varylng one
of the parameters L, C, or R. The variation of the parameters L and C has
been studied sufficiently in preceding sections. As to the parameter R, it
must be noted that only those parametric variations which extend alternately
into the region of negative resistance are capable of producing parametric
excitation. We shall not go into this matter here, as it 1is clear that on
physical grounds negative resistance means the supply of energy from an out-
side source.

Mandelstam and Papalexi (22) developed an interesting generator of
electrical energy, which they called a "heteroparametric machine." The ar-
rangement consisted of a series of coils located on the periphery of a sta-
tionary disk; the inductance of these colls was varied by the periodic passage
of teeth and slots on a rotating disk parallel to the stationary disk. The
frequency of the inductance variation thus obtained was of the order of 2000
cycles per second.

In a circuit of this kind devoid of any source of energy other than
the kinetic energy of the wheel, electrical oscillations of exactly half the
frequency of the parameter variation were observed. For a linear system, cor-
responding to a linear Mathieu equation, the oscillations rapidly reached high
amplitudes of about 1500 volts which caused a puncture of the insulation;
later on, by adding a non-linear element in the circuit, the authors succeeded
in obtaining stable performance of the machine.

The factor of modulation during these tests was of the order of 40
per cent, and the power developed was about 4 kilowatts. The non-linearity by
which the oscillations were stabilized was obtained by means of a saturated-
core reactor; an auxlliary d-c winding served the purpose of displacing the
stable point on the characteristic and of adjusting the stable voltage to a
desired value.

Similar experiments were produced with a periodically varying capac-
1ty. The variable capacitor consisted of 25 aluminum disks with peripheral
holes rotating between a corresponding number of similar stationary disks.

The variable capacitor in these tests was shunted by a constant oil capacitor.
The non-linearity necessary for the stabilization of oscillations was obtained
by neon tubes which permitted maintaining the voltage at about 600 to 700
volts. Without the neon tubes the phenomenon is governed by a linear Mathieu
equation, and the voltage rises rapidly to between 2000 and 3000 volts and the
insulation 1s punctured. If one changes the parameters of the oscillating



125

circuit so as to deviate from the condition of exact fractional-order reso-
nance, the amplitudes of the parametrically excited oscillations decrease, all
other conditions being equal, until finally the excitation suddenly disappears
at a certain critical threshold as was analyzed theoretically in Section 123.

125. SUBHARMONIC RESONANCE ON THE BASIS OF THE MATHIEU-HILL EQUATION

In order to complete the study of heteroparametric excitation, we
shall now show that the differential equation [102.2] of subharmonic external
resonance which we have discussed in Chapter XVII on the basis of the theory
of Poincaré can be reduced to an equation of the Mathieu-Hill type. For that
purpose, instead of following the method of Poincaré by introducing small per-
turbations @ and B, Equation [103.9], in the value of the parameters w and v,
we shall now introduce a small perturbation p in the value of the periodic
solution z,(7) of Equation [102.2] since we know that it possesses periodic
solutions. Putting

x = x,(r) +p [125.1]

and substituting it into Equation [102.2], we get, after expanding f(z,z) in a
Taylor seriles,
i+ 2y + b+ p = pflx,s) + Agsinnr + pufxo(xo,a'co) + puf (z,3y) [125.2]
Since z, satisfies Equation [102.2], we obtain
P+ p = puf, (z,,5) + puf; (2,,) [125.3]

where f;o(xo,io) and f;o(xo,io) are known functions of z, and z, and, hence,

known periodic functions of time. Equation [125.3] is therefore an equation

with periodic coefficients. If we use the substitution [118.2] which in this
case 1is

I .
ve Efféa(xo,xo)dr

p = [125.4]

Equation [125.3] becomes
2
i [1-uf, + L) - LU =0 (125.5]

Since the quantity in brackets 1s a periodic function of time, this equatlon
is of the Mathieu-Hill type whose general solution is »

z = e“klr¢l(‘r) + e“"27¢2('r) [125.6]

where ¢, and ¢, are periodic with period 2= and k; and k, are the character-
istic exponents of the general theory. The question of the stability of the
motion can be discussed by the method indicated in Sections 118 and 119 if
one knows.the explicit form of the function f(z,; ;).
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126. AUTOPARAMETRIC EXCITATION

Throughout this chapter we have been concerned with heteroparametric
excitation because in a great majority of practical cases self-excitation as
well as the steady state of non-linear oscillations can be discussed more con-
veniently on the basis of the theory of Poincaré than by treating it as auto-

parametric excitation. )
In some special problems, however, the concept of

0 autoparametric excitation of oscillations may be conven-
ient. 1In this section we propose to apply this method to
an interesting problem of an elastic pendulum investigated
by Gorelik and Witt (29). These authors investigated the
motion of a physical pendulum suspended on a spring and
capable of oscillating in a plane, as shown in Figure 126.1.
Let m be the mass of the bob, l, the length of the pendulum
in the absence of the dynamical load, r its length under
load, k the spring constant, and g the acceleration of
gravity. Obviously the system possesses two degrees of
m freedom, namely, the angle ¢ of the pendulum and the elon-
Figure 126.1 gation z of the spring.

In order to investigate the condition for auto-
parametric excitation, we write the Lagrangian equations of motion for both
degrees of freedom. The kinetic energy of the pendulum is

@

T = —7;1(%2 + 124 [126.1]
and its potential energy is
— k- _¢
V= S =)~ mgrll - &) [126.2]

2
where 1 - - ~ ¢0S ¢. The first term of V corresponds to the elasticity of

the suspension and the second to gravity. If we introduce a new constant
mg
l=r + e [126.3]
and a new variable

= 12 ! [126.4]

Expressions [126.1) and [126.2] become

2 .
T = mzl (2 + ¢% + 2247) [126.5]

_ml ko 0 0
V——E—(mz + T8+ lz¢) (126.6]
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where 2z and ¢ are assumed to be small of the first order and we retain terms
up to and including those of the third order.
The Lagrangian equations are
. k 9 2 ]
2+ —z+ |- — =0
m (21 ¢ ¢ )
[126.7]

¢ + §¢ + (%zqs + 2id + 2z¢') =0

It is seen that, if the terms in the parentheses of these equatlions are zero,
the first equation will represent a simple harmonic oscillation in the z de-
gree of freedom with frequency w, = Vk/m, and the second equation will give a
similar oscillation in the ¢ degree of freedom with frequency w, =Vg/!.
These terms represent a non-Ilinear coupling between the two degrees of free-
dom; we will now investigate this condition.

It is to be noted that in the general case when w, #-gam.the non-
linear coupling does not contribute anything of particular interest.

An interesting case arises when w, = 2wys. Assume that the spring
has been stretched and released at ¢ = 0 so that ¢ = 0 inltially. The initial
motion will, therefore, be

z = zyco8wt [126.8]

Substituting this value of 2z into the second equation [126.7] and regrouping
the terms, one has

o+ 2zocoswzt)$ - (2w, sinwzt)ci; + w¢2(1 + zycos wit)p = 0 (126.9]

which is a differential equation with periodic coefficients and can be reduced
to the form of the Mathieu equation. Since w, = 2wy, it 1s observed that the
periodic variation of the coefficients occurs at twice the frequency of the
oscillation in the ¢ degree of freedom. If the parameters of the Mathieu
equation to which Equation [126.9] can be reduced are such as to correspond to
the unstable region, the oscillation in the ¢ degree of freedom will gradually
build up.

This curious phenomenon of autoparametric self-excitation was actu-
ally observed by Gorelik and Witt. However, in view of the fact that this
system is conservative, 1t 1is apparent that the building-up of the oscilla-
tion in the ¢ degree of freedom implies a decrease of the original oscillation
[126.8] in the z degree of freedom. In this manner the occurrence of the ini-
tial oscillation in the z degree of freedom 1s transferred intc the ¢ degree
of freedom through the instrumentality of the autoparametric non-linear coup-
ling between both degrees of freedom.
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One could, of course, start from the ¢ degree of freedom by releas-
ing the pendulum from an angle ¢ = ¢, for ¢t = 0 which would give the oscilla-

tion
¢ = ¢, coswt [126.10]

Substituting this expression into the first equation [126.7], one has
2
P 4wl = %T%(l ~ 3cos 2w,t) [126.11]

This 1is the equation of a simple harmonic oscillator with frequency w, acted
on by a perlodic external excitation with frequency 2wy = w,. Hence, in the
2z degree of freedom there willl be ordinary linear resonance by which the z-
osclllation will gradually increase while the ¢-oscillation will gradually
decay, since the system is conservative. )

It is to be noted that in both cases the phenomenon manifests 1it-
self in the fact that the energy appearing initially in one degree of freedom
1s eventually transferred into the other degree of freedom. There exists,
however, an asymmetry in the phenomenon depending on whether one starts with
the oscillation [126.8] or [126.10]. If the initial oscillation is [126.8],
the excitation of the oscillation in the ¢ degree of freedom occurs through
the instrumentality of the unstable solution of the Mathieu equation, whereas
if the initial oscillation is [126.10], the autoparametric excitation mani-
fests itself in classical linear resonance with which the z-oscillation builds
up. This difference, however, is incldental to the particular scheme employed
and 1s of no further importance insofar as in the second case the autopara-
metric excitation is still present 1n the form of the centrifugal force whose
frequency is twice the frequency of the oscillation in the ¢ degree of freedom.

It 1s noteworthy that in both cases the frequency with which the pa-
rameter varies 1s double that with which the self-excited oscillation occurs.
If one starts the oscillation in the z degree of freedom this is apparent be-
cause w, = 2wy. If, however, one starts the oscillation in the ¢ degree of
freedom, it 1s noted that the variation of the z-parameter takes place under
the effect of the centrifugal force so that in both cases the condition of
autoparametric excitatlion is fulfilled and the "pumping" of energy from one
degree of freedom into the other 1s reciprocal.

Another interesting experiment similar to that of Melde was made
recently by Sekerska (22), who passed an alternating current of 50-cycle fre-
quency through a stretched metallic wire capable of oscillating laterally
with a frequency of 50 cycles. It 1s observed that if the wire is initially
at rest the passage of alternating current eventually builds up the lateral
vibration of the string. The explanation of this phenomenon is that the ther-
mal effect of a current of 50-cycle frequency occurs at a frequency of 100
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cycles which causes a periodic variation of the parameter, the coefficient of
elasticity, at that frequency, and this, through the instrumentality of the
autoparametric excitation, produces self-excitation of lateral oscillations
with half the frequency of the parameter variation.

These phenomena occur not only for the ratio w,/w = 2/1, where w,
is the frequency at which a parameter varies and w is the frequency of self-
excited autoparametric oscillation, but also for the ratios 2/2, 2/3,

Migulin (30) investigated, both theoretically and experimentally, these phe-
nomena when this ratio has the value 2/3 and found that the resonance curves
then resemble those obtained by Mandelstam and Papalexi, Chapter XVII, in
their studies of subharmonic resonance of the nth order. As a matter of fact,
the phenomena of subharmonic resonance and those of autoparametric excitation
are closely related to each other and merely represent different aspects of

the same physical phenomenon.
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