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FOREWORD

The report on the introduction to non-linear mechanics as a whole

falls into four major divisions.

Part I, published as David Taylor Model Basin Report 534 under date

of December 1944, is concerned with the topological methods; its presentation

substantially follows the "Theory of Oscillations" by Andronow and Chaikin.

The material is slightly rearranged, the text is condensed, and a number of

figures in this report were taken from the book. Chapter V, concerning

Li6nard's analysis, was added since it constitutes an important generaliza-

tion and establishes a connection between the topological and the analytical

methods, which otherwise might appear as somewhat unrelated.

Part II, published as David Taylor Model Basin Report 546 under date

of September 1945, gives an outline of the three principal analytical methods,

those of Poincar6, Van der Pol, and Kryloff-Bogoliuboff.

Part III, published here, deals with the complicated phenomena of

non-linear resonance with its numerous ramifications such as internal and

external subharmonic resonance, entrainment of frequency, parametric excita-

tion, and the like.

Finally, Part IV will review the interesting developments of Mandel-

stam, Chaikin, and Lochakow in the theory of relaxation oscillations for large

values of the parameter p. This theory is based on the existence of quasi-

discontinuous solutions of differential equations at the point of their "de-

generation," that is, when one of the coefficients approaches zero so that the

differential equation "degenerates" into one of lower order. A considerable

number of experimental facts will be explained on the basis of this theoreti-

cal idealization.
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INTRODUCTION TO NON-LINEAR MECHANICS

PART III

NON-LINEAR RESONANCE

79. INTRODUCTORY REMARKS

The object of Part III is to outline the present status of the the-

ory of non-linear resonance. The phenomena of non-linear resonance are far

more complicated and diversified than those of ordinary linear resonance, and

it does not seem possible as yet to give a unified picture of the whole sub-

ject. Some of these phenomena appear to be more adequately discussed on the

basis of the quasi-linear theory of Kryloff and Bogoliuboff, while others, on

the contrary, fit better into the theory developed by Mandelstam and Papalexi,

which is based on the earlier work of Poincar6.

For these reasons it was thought preferable to present separately

the expositions of these two principal schools of thought without attempting

to establish further generalizations at this time. It is apparent that this

procedure inevitably reflects the somewhat unsettled state of the whole sub-

ject and leads to a certain overlapping of topics. The reader will undoubtedly

observe this in connection with certain specific topics such as parametric

excitation, entrainment of frequency, and others.

The first four chapters of Part III are devoted to an exposition of

the theory of Kryloff and Bogoliuboff; the last three give an outline of the

work done by the school of Mandelstam and Papalexi.

In addition to the intrinsic difference in the methods used by vari-

ous writers, there also exists a considerable difference in the terminology

they employ. An attempt was made to remedy this situation to some extent by

designating as internal resonance the case when the divisors in the general-

ized response function become small. The term external resonance is reserved

exclusively for the case when an external periodic excitation exists, as in

the theory of ordinary linear resonance.

In the quasi-linear theory of Kryloff and Bogoliuboff the study is

more or less equally divided between these two principal cases, whereas the

work of the school of Mandelstam and Papalexi centers mainly about the phenom-

ena of external resonance, which are illustrated by numerous experimental

researches.

The reader will find it convenient to read Chapters X and XI.I of

Part II before reading Chapters XIII, XIV, XV, and XVI of Part III. It is

also suggested that he read Chapters I, III, and IV of Part I,and particularly
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Chapter VIII of Part II,before reading Chapters XVII and XVIII, which are in-

dependent of the first four chapters of Part III.

Chapter XIX depends very little on any of the preceding chapters, Am

except possibly on the concept of representing solutions of differential equa-

tions by phase trajectories which is outlined in Section 3, Part I. The ess-

ence of Chapter XIX lies in the theory of differential equations with periodic

coefficients, outlined only briefly in Section 108.

It must be admitted that these attempts to establish junction points

between the exceedingly complicated phenomena of non-linear resonance and var-

ious existing theories are probably incomplete at present, and it is hoped

that this survey will serve as a stimulus for further generalizations.
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CHAPTER XIII

SYSTEMS WITH SEVERAL DEGREES OF FREEDOM*

We now propose to study the behavior of quasi-linear systems with

several degrees of freedom. For this purpose it is useful to review the so-

called method of complex amplitudes used extensively in the theory of electric

circuits. From this method the definitions of impedances and admittances of

electric circuits can be generalized so that they also apply to mechanical

systems. The further generalization necessary to pass from linear problems

to quasi-linear ones is then relatively simple.

80. METHOD OF COMPLEX AMPLITUDES

In dealing with oscillatory phenomena, it is advantageous to use the

exponential function eit= cos wt + j sin wt, where j = Y-T. A few well-known

propositions, which will be useful later, are given below.

1. Multiplication by j of a sinusoidal function f(t) = e
i t advances its

phase by f/2. This follows from Euler's identity j = e i; whence jeiwt

e (
w
t +i) . Likewise, multiplication by -j retards the phase of ej

i t by r/2.

2. Multiplication of eiw eby j", where n is an integer, advances or re-

tards the phase of the vector e~"
t by nir/2, according to whether n is a posi-

tive or a negative integer. This f9llows from the definition j" = j-j . • j

(n factors); each multiplication by i advances the rotation by r/2.

3. The derivative df/dt = jwf. Hence the derivative of a sinusoidal

vector f = aei't consists in the operation (jw) on the vector ae "
t, which mul-

tiplies the amplitude a by w and advances the phase by 7/2. Likewise,

dnf/dt" = (jw)"f is the operation which multiplies the amplitude by w" and

advances the phase by nfr/2.

Symbolically, 6" = dn/dt" = (jw)" = j"w". This holds only when a is

a constant.

4. For a linear system of sinusoidal functions f, for example, f = f, +

f2 , the operation (jw) is additive, that is, (jw)f = (jw)fl + (jw)f2.

5. If, instead of (jw) or (jw)", one has a linear function 0(j), for

example, 0(j) = A + Bj, the operation [O(j)]f = Af+ jBf. In this case the

operation 0(j) produces two effects:

* The subject matter of this and of the following three chapters is taken from the treatise of Kryloff

and Bogoliuboff, Reference (1) .*

* Numbers in parentheses indicate references on page 130 of this report.



a. Multiplication of the amplitude vector f by A without

changing its phase.

b. Multiplication of the amplitude by B with the incident

rotation of the phase by 7/2. The amplitude I of the new vector

[O(j)]f is thus complex, if the original amplitude a of the vector

f is real.

6. More generally, if one has a relation between sinusoidal functions

of the form

o0 (j)f0 (t) + 1(j)f 1(t) + ' + n(j)f(t) = 0 [80.1]

there also exists an analogous relation

0(J)I o + 0 1(j)I 1 + " + 0,(j)n = 0 [80.2]

between their complex amplitudes Io, II,,. ., I n .

81. ELEMENTS OF THE THEORY OF LINEAR CIRCUITS

In the theory of linear electric circuits one encounters differen-

tial equations of the form

dkn dkE
z "* k d tk Il, dtk
k= k=O0

where I and E are the current and voltage in a given mesh, and o k and Rk are

constant parameters. This equation, written in terms of complex amplitudes,
is

Fak(J ) k I 6 a(j) k E
k=0 k=O0

From this we obtain

m

'ak(j()
k

E = k=n I = Z(jw)I [81.1]

Zfk (jw) k

k=O

and

Z oo k(Jw 
) k

Z ak (jW)
k

k=O
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where M

Z k k(j &

Z(jw) = [8 .3]

k=O

is the complex impedance and

n

Z k (i()k

Y(j) = k=0

Z ak (jW)k
k=O

is the complex admittance of the mesh. From these equations it follows that

z(jW) = 1 [81.4]
Y(jW)

Problems involving systems with one degree of freedom are thus re-

duced to the ultimate calculation of impedances or admittances, as the case

may be.

For electric circuits this procedure is too well known to need em-

phasis here; consequently a few words about it will suffice. For an induct-

ance L and a capacity C the values of the complex impedances are respectively

jLw and 1/jCw; the resistance is a real quantity R. For a series circuit,

the impedance equation is used; for a parallel one, the admittance equation.

Thus, when L1, R1 , and C1 are in series,

Z, = R + j(L C)

For another series circuit (L 2,R 2, C2 ) one has

Z 2 = R 2 + j(L 2w

If these two circuits are in parallel, the admittance is

1 1 Z + Z2
Y= Y1 + Y2 = - +  = Z2

z1 Z2  z Z,

and so on.

For systems with several degrees of freedom, there arises the ques-

tion of coupling between these degrees of freedom. The coupling factor can be

determined by analogy with electric-circuit theory.

Consider, for instance, a system with two degrees of freedom. -The

first circuit contains L1, R,, and an external "forcing" function. The forcing

rII MI INIIIIIIIIII 1I i Mll ,Nil YLWliME 14IIIYYIYIIYYIIYYIIYY YYIIIIIIIYIYY IIIY II IYYY IYIIYIIII IIIIYIIIYI III IY IYIIIIIII1
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Figure 81.1

function is a sinusoidal electromotive force

E = Eoeijw. The second circuit contains L 2,

R 2, and C2 . In addition, the two circuits

are coupled together; Mis the coefficient
of mutual inductance. Kirchhoff's law ap-
plied to the first circuit gives

dil diRi2 = Eoe  [81.51L1 dt dt+ Ri - M d

For the second circuit it gives

L 2 + R 2 i 2 + f' 2 dt + M dt=
dt dt

[81.6]

Written in terms of the complex amplitudes, these equations are

(jLlw + R1) I - jMwI 2 = Eo

jMwI 1 + (jL 2 w + R2 + = 0jCW,

whence

R 2 + j( L  CW

I 1 = E [R+2  ] 2M2,2

(R + jL) 2 + j(L
[81.7]

The cofactor of E o in this expression is the admittance YI(jw) of

the first circuit. If there is no coupling, that is, if M= 0, Equation

[81.7] gives

R, + jL 1 W

As another application of the theory of linear circuits, consider

two simple circuits (L 1,C) and (L 2,C 2) coupled inductively as shown in Figure

81.1. The complex equations are*

(Llj + i - Mjwi 2  0

-Mjwi + (L2j + ji 2 = 0
C2

[81.8]

The condition which expresses the consistency of the system [81.8] for values

il and i 2 other than the trivial ones, iI = i 2 = 0, is

* We follow the notation of Kryloff and Bogoliuboff in choosing the positive directions as shown in

Figure 81.1.
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A(jw) =( Ljw + c L)(Ljw + + M 2W 2 = 0 [81.91

that is,

(LICw 2 - 1)(L 2 C2
2 - 1) - C2 = 0 [81.10]

Let

2 1 2 1 2 M
2

L = CI ' L 2C 2  g = LL 2

This gives

4 (1 g 2) _ ( 2 W2 2 + 1222 = 0 [81.11]

The oscillating circuits will have frequencies

2 (2 + ( 2+ (( 
2  2 + 4 2  

[81.]2

1 2(1 - g 2)

2 22 2 2 2 2 2

( )- / - w) + 4g [81.13]
2(1 - g2 )

differing somewhat from the natural frequencies wo and w 2 of each circuit.

82. ANALOGIES BETWEEN ELECTRICAL AND MECHANICAL SYSTEMS

Very often the establishment of a formal analogy between the differ-

ential equations expressing two different types of problems permits a formal

transfer of known solutions of problems of one type to those of the other. The

method of complex amplitudes developed in connection with eledtric circuits

has a useful application in mechanical problems where generalized definitions

of mechanical impedances and admittances are involved. In acoustics the no-

tion of "acoustic impedance" also plays an important role.

The real usefulness of these generalizations occurs in connection

with systems having several degrees of freedom. It is preferable, however,

to establish an analogy first for a system having one degree of freedom.

The differential equation of a simple (L,C,R)-circuit acted upon by

a sinusoidal electromotive force is

dt CJ
0

Consider, on the other hand, a mechanical system with one degree of

freedom excited by an external sinusoidal force. Its equation is

d 2x dx jwtM-T + hdt- + kx = Foe = f

0011M OMN1l MIII111 ml



When the new variable v = d is introduced, this equation becomes
dt

md+ v + k vdt = Foet = F [82.2]

One observes that Equations [82.1] and [82.2] are of the same form and that

the following corresponding quantities indicate the analogy between electrical

and mechanical problems:

(i,v); (L,m); (R,h); ,k); (E,F) [82.3]

The method of complex amplitudes in the electrical problem gives

10 11 R 2E x e [82.4]

where x = L- C is the reactance and e, = tan - 1  R . The quantity

e- jo,e

R 2 + (L 2 = Ye )

is the complex admittance of the circuit. By the analogy [82.3], one obtains

V + e- 3m F0  e-im [82.5]
h (m - h-2 h2 w2  + (mw 2 

- )2

where Om = tan-' m2hwk . By further analogy, the quantity

e - = Y(j)
Yh2w2 + (m

2 - k) 2

is the complex admittance of the mechanical system. In both cases € = 0 at
resonance, the variables Io and v are in phase with the exciting forces E0 and
F0 respectively, and their amplitudes are limited by the dissipation factors
R and L. The complex impedances are the inverse quantities of the admittances,

that is, Z(jw) = 1Y f(jw)"
One could proceed to establish an analogy between differential equa-

tions of the second order by differentiating Equation [82.1]. Here one would
compare the differentiated equation [82.1] with that of the mechanical system.

The condition of equivalence for these equations is

(i, x); (L,m); (R, h); ,k ; - , F) [82.6]

It is seen that both the electrical and mechanical problems can be

treated by the concept of admittances and impedances.

These electro-mechanical analogies can easily be established for

systems with several degrees of freedom. Sometimes the establishment of an
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ki m, k 2 k m

F

(o)

L L2  L3

c, C2  3 E

2 - i 3 - 12 (b)

Figure 82.1

analogy with an electrical problem helps considerably in the solution of a

mechanical problem. As an example, consider the mechanical system shown in

Figure 82.1a, whose electrical analogue is indicated in Figure 82.1b. Desig-

nating the displacements of the masses ml, m 2, and m, by xj, x 2, and x3 and

the velocities by xi = vl, '2 = v2, and x3 = v3 respectively, we have, using

the operational notation,

V 1= jWXl; ?v2 = jWX 2; v3 = jWX3  [82.7]

The differential equations of the mechanical system are

mijwv I + k v1  - (v 2 - v1) = 0

m 2 jWv-2 + k2V 2 - k3 (v 3 - v 2 ) = 0 [82.8]

m 3jv 3 + k (v3 - v2 ) = F
JW

In these equations, if one takes the velocity v as the dependent

variable, the acceleration is clearly jwv and the displacement is v/iw.

On the other hand, if, in the electric circuit of Figure 82.1b, the

current i is the dependent variable, by applying Kirchhoff's law to the subse-

quent meshes of the circuit one gets

1 1
LjWoi + 1 - 1 2 i) = 0

Cjwi C2JW

L 2jwi 2  G2 j1) (i 3 - i 2 ) = 0 [82.9]
C2 + & 3j

L3ji 3 + 3 - 2) = E
CCjjj

b ii ti l ll IIIIIYillIIdI~ Ill i IlilIm Il



It is seen that both systems are formally identical. In this par-

ticular case a more complicated investigation of the motion of the mechanical

system shown in Figure 82.1a can be more conveniently conducted by utilizing

the electrical analogy of Figure 82.1b.

In general, any mechanical problem with several degrees of freedom

can be represented by an electrical analogue. Since the terminology is more

definitely established for electric circuits than for mechanical systems, it

is always preferable to use the "electrical language."

In more complicated problems it is sometimes difficult to establish

an analogy because the determination of mechanical parameters generally is

more difficult than that of electrical ones. Where it is possible to estab-

lish an analogy, the method of complex amplitudes leads immediately to the

establishment of steady-state conditions.

83. APPLICATION OF THE METHOD OF EQUIVALENT LINEARIZATION
TO THE STEADY STATE OF A QUASI-LINEAR SYSTEM

With this reminder of the principal points of the theory of linear

circuits, we can now proceed to establish a generalization of the Kryloff-

Bogoliuboff theory applicable to circuits containing non-linear conductors

of electricity. It will be assumed that the departure from linearity is

small so that the theory of the first approximation describes the phenomena

with sufficient accuracy. In what follows we shall make frequent use of the

Principle of Equivalent Linearization, Chapter XII, so that the definitions

of impedances and admittances can be extended to quasi-linear systems.

We shall consider first a linear dissipative circuit with constant

parameters R, L, and C, the decrement of which is 6 = -R/2L. Let us assume

that we introduce in series with this circuit a non-linear resistor having

the characteristic e = f(i). The variable resistance p of such a non-linear

conductor is defined, as usual, by the relation p = df( i) In accord-
d di

ance with the Principle of Equivalent Linearization, the non-linear conductor

can be replaced by an equivalent linear one whose resistance Re is

1 2r
Re = f f(i o cos ) cos do [83.1]

where io is the quiescent value of i around which the oscillations are to be

investigated. The complex equation of the circuit is

Ljw + R + + R e = 0 [83.2]
Cjw

Equating to zero the real and imaginary components of this equation, we obtain

two equations:
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L 1 -- 0 and R + Re = [83.3]
Co

The first equation [83.3] determines the frequency and the second the ampli-

tude of oscillations in a stationary state. From the second equation it is

noted that oscillations are possible if Re < 0. In the theory of linear cir-

cuits, R e = 0, which requires that R = 0, that is, steady oscillations are

possible only if the circuit has no resistance, which is obvious. It is to

be noted that the method of equivalent linearization can only be applied when

the resistance R is small enough to make the decrement 6 = -R/2L small, in

which case the oscillations are feebly damped and the system is quasi-linear

and can be described by equations of the firstapproximation.

Let us now consider a linear circuit with admittance A(jw), that is,
1

with impedance Z(jw) = A(jw)' closed on a non-linear conductor with the equiv-

alent admittance S(a), where a is the amplitude. The circuit will consist,
1 1

therefore, of two impedances A(j) and Sa) in series so that the resultant

impedance will be

1 1
Zr(Jw) - (jw) S(a) [83.4]

For steady-state oscillations, Zr(jw) = 0, that is,

A(jw) + S(a) = 0 [83.5]

Again two equations are obtained by splitting the complex quantities into real

and imaginary components. One of these equations determines the frequency and

the other the amplitude of the stationary oscillations.

We shall now apply the method of complex amplitudes to the study of

oscillations in electron-tube circuits. The non-linear conductor, the elec-

tron tube, is represented by an equation of the form

i , = f(E)

where ia is the anode or plate current and E is the control voltage. This

equation can also be written as

i4 = S(a) [e + Dea] = S(a)e [83.6]

where eg and ea are the grid and the anode voltages, D = 1/p is the factor of

the anode reaction (here p is the amplification factor of the tube), and S(a)

is the average transconductance,* a function of the amplitude a. The quantity

S(a) is given by the equation
1 2

S(a) =ra ff(E 0 + acos )cosdo [83.7]
0

* The term mutual conductance is also employed.

so11, 11 IM11lli, i611WINNII owl



'_ where E o is the quiescent point of

the control voltage.
A

eg Let us consider the cir-

M cuit shown in Figure 83.1 represent-

ing an electron-tube oscillator with

L inductive coupling. Designating by
Za(jw) the impedance of the circuit

R between the points A and B and by
-, Ajw) the mutual reactance and using

B other notations and positive direc-

tions as indicated in Figure 83.1,
Figure 83.1 we have

ea = - Za(jw)ia; e, = M(jw)ia [83.8]

From these equations and Equation [83.6] the admittance A(jw) of the circuit

is given by the expression

A(j)= [83.9
A(j) = M(j) DZ(j) [83

In a self-excited state the total impedance vanishes, and by Equations [83.4]

and [83.5] one must have

A(jw) - S(a) = 0 [83.10]

In other words, the admittance of the external circuit must be equal to the
admittance, or transconductance, S(a) of the electron tube.

Additional equations from which the conditions of the steady state

can be established are obtained as follows. Let us introduce a complex num-

ber K defined by the relation

K - - (j) [83.11]
- ea Z(j W)

From Equations [83.9], [83.10], and [83.11], we obtain

K = D + [83.12]
S (a) Z,(jW)

This equation is established by Barkhausen (2) and can be applied to the cir-

cuit shown in Figure 83.1. By a simple calculation we find first that

R + jLw [31
(1 - LC 2) + jCR [83.13]

The voltage between the points A and B is eAB = Za(jw)ia and the current i1 in
the LR-branch of the circuit is i1 = eAB/(R + jLw) = i/[(1 - CLw2) + jCR].

Hence the grid voltage eg is
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Mjw ' [83.14
eg Mjwi (1 - LC 2) + jCRw a83.14]

whence

K = e Mjw[(l - LCW2 ) + jCRWo] MjW [83u15
eA [(1 - LC 2 ) + jCRwl](R + jLw) R + jLw

Substituting this value of K into Equation [83.12] and using Equation [83.13],

one finds, after separating the real and the imaginary components, the follow-

ing two equations:

SS(M - DL) = CR [83.16]

1 - LCw2 + SDR = 0 [83.17]

Since both D and R are generally very small, the quantity SDR is of the second

order and can be neglected. One then finds from Equation [83.17] that the

frequency of self-excited oscillations is practically that of the oscillating

circuit, provided the amplification factor p = 1/D is sufficiently large.

Equation [83.16] determines the amplitude az of the stationary self-excited

oscillation, namely,

2 
CR

S(az)  al (Eo + acos) cosd = C DL [83.18]
7raL o M - DL

Let us assume, for example, that the experimental function ia = f(E0 + acos 0)

is of the form

ia = f(E 0 + acos¢) = io + klacosO + k2 (acos ) 2 + k3(acos0) 3 +

where io = f(E0) and kj, k2 , ... are constants. Substituting this expression

into Equation [83.18], one gets

S(a) = [io cos d¢Q + kla cos 2 do +
7ra o o

2r 2Xr

+ k2a2f cosod + k 3a3f COS4d + " ] [83.19]
0 0

The first and the third terms of this equation are zero. If we limit the ex-

pansion to the first four terms, Equation [83.19] gives

S(a) = k + 3 2

whence, by Equation [83.16], the amplitude of the stationary oscillation is

a = 3k:_ - k) [83.20]
k3 (
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It is seen that the quadratic term of the polynomial approximating the exper-

imental non-linear characteristic ia = f(E) does not contribute anything to

the expression for the amplitude a of the stationary oscillation. The ampli-

tude is expressed only in terms of the coefficients ki and k8 of the linear

and cubic terms and the parameters of the circuit, as was found previously by

other methods; see Section 54.

84. APPLICATION OF THE METHOD OF EQUIVALENT LINEARIZATION
TO THE TRANSIENT STATE OF A QUASI-LINEAR SYSTEM

The method of complex amplitudes can also be generalized for the

transient state of a quasi-linear system. For this purpose it is necessary

to extend the definition of symbolic differentiation to the complex exponen-

tial functions ept, where p = 6 + jw. The quantity 6 is the decrement if it

is negative and the increment if it is positive. The rule of symbolic dif-

ferentiation remains the same as given in Section 80, Proposition 3, namely,

df d2f 2

dt dt2

The vectorial interpretation of these operations is somewhat different. Thus,

for example, d-f pf = (6 + jc)f = (df + jwf) means that. the vector con-dt dt
sists now of two components, one jwf leading the original vector f by 7r/2 and

the other 6f in phase with f. It follows, therefore, that the vector df leadsdt
the vector f by an angle = tan-'s which is less than n/2 if 6 > 0, that is,

if 6 is an increment. If, however, 6 < 0, that is, if 6 is a decrement,
q = tan-1 W which is larger than r/2. The generalization for higher deriv--161
atives does not present any difficulties. If 6 * 0, -n 7/2; if, however, the

condition of aperiodic damping is approached, w - 0 and + 0, which means

that all higher derivative vectors approach the in-phase condition with the

real exponential function f(t) = e 6t

For the transient state we must use the condition

A(p) = 0 [84.1]

instead of the condition of consistency [81.9].

Consider, for example, the self-excitation of a simple (L,C,R)-

circuit, as shown in Figure 84.1, closed on a non-linear conductor N which has

the equivalent resistance Re(a).* In order to obtain a self-excitation of

this circuit, the total impedance must be zero, that is,

Z(p) + Re = 0 [84.2]

where Z(p) is the linear impedance, which we wish to consider in connection

* For convenience we will write Re in place of Re(a) in the intermediate calculation.
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with the transient state N

P = - 6 + jw

when 6 # 0 but is small.*

The linearized impedance of the

steady state is

Zj(jw) + R e = Lj + (R + R e) + = 0
Cjw L C R

Hence, for the transient state, we have Figure 84.1

to substitute p for jw. This gives

LCp2 + (R + Re)Cp + 1 = 0 [84.3]

Dividing by LC and putting LC 
=  002 we have

2 R +Re p + 2
S+ L P o = 0

whence

P2L -- 2(R ) =i 6 + jw  [84.4]

where 6 = + R is the decrement and w is the frequency. Self-excitation

from rest is possible if R + Re(0) < 0, that is, if R < -Re(0). We shall call

Ro = -R the critical value of the negative resistance and 60 = L the linear

decrement. In these notations we have

6 = 6 1 - [84.51

At the start, that is, when a = 0, one must have IRe(O)I > JRo , that is,

6 < 0, in which case it follows from [84.4] that the amplitudes increase ini-

tially. The function IRe(a)l is a monotonically decreasing function of a so

that for a certain value a = a1 , Re(ai) = R o and 6 = 0, which means that the

oscillation reaches a stationary state. It is thus seen that the concept of

equivalent resistance Re(a) permits formulating the condition of approach to

the steady state by means of the variable decrement 6. When a -) az, for which

Re(a) + Ro, 6 - 0.

As a second example, consider the coupled system shown in Figure

84.2 in which N is a non-linear conductor characterized by the equivalent re-

sistance Re(a) as in the first example. With the same assumptions and nota-

tions as in the preceding example, the linear impedance of the system is

* In this expression, 6 is the decrement if it is positive and the increment if it is negative; this

corresponds to the notation of Kryloff and Bogoliuboff.
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1 M 2C2 j9
3

Z(jD) = Lj + R + + (1LC ) + RC [84.6]
C j + (1 - L 2 2 S+ jR2e2

N When the non-linear conductor Nis present,

we have to add Re(a) to R, in the preceding

expression and replace j9 by p in order to

form the expression for the transient imped-
L, R,

ance Z(p) during self-excitation, which we

now propose to investigate. It is apparent

L2 that the quantity Z(p) is generally of the

form

2 A(p)z(v) = [84.7 ]Figure 84.2 B(p)

Since the condition for self-excitation is

Z(p) = 0 and since B(p) O, we express this condition as

A(p) = [LICip + (R1 + Re)Clp + 1][L 2c2p
2 + RC2 p + 1] M 2CC 2p

4 = 0 [84.8]

Let

1 2 1 2 M
L 1C 1 = ; L2C2 2 ; IAIL ;

Pl= (R 1 + Re)Cll = i R + e RL1 1  P2 = R 2 C2w2 = L2W2

where p, and p2 are small dimensionless factors of the first order. Equation

[84.8] becomes

( + P -+ 1 )( P + P2 P + )-2 2 0 [84.9)
)1 2 
2  1 2

Since p, and p2 are small, we can introduce a small parameter p by setting

p, = p~ and p2 = ~2. We thus obtain the following characteristic equation

for the transient state:

2 2 4
A(p,p) = + P +1) - g = 0 [84.10]

1 1 2 2 1 2

This equation can be solved by substituting for p a series expansion

P = po + .p1 + P 2p + *.. and developing the function A(p,p) in a Taylor se-

ries around (po,0). By equating to zero the coefficients of like powers of p,

one obtains a system of equations from which the subsequent terms pl, p 2, ".

can be calculated. These equations are
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A(po,O) = 0

A,(po,O)pl + A,(po,O) = 0 [84.11 ]

,(po,) p2 + (po,0)p2 + 2Ap (po,O)p, + A,,(po,O) = 0

From the first two equations one obtains po and p,, which give the first ap-

proximation

p = Po + ppl [84.12]

Introducing this value of p into Equation [84.10] and making use of Equations

[81.12] and [81.13], one obtains the following equations

1 (p2 + Q)(p2 + 222)A (p,0) = 2 22

1 2p(2p2 + 9Q2 + 2)

1 - g2 2

2 2p 2 1)p pp2 +1
A (p,O) = -( + 1) + 2

It is apparent that, since we have here a coupled system possessing two dis-

tinct coupled frequencies -Dl and 9 2 , self-excitation may occur with either one

of these frequencies. Thus one obtains two values for p = Po + pp,, namely,

P = j2- 2p l
1 2- 212 1 - g2 - P22 2 9 1 -

[84.14]
1 w - 2 1 1 1 - 9, 1

P - J2 2 P 2 1 1 2 9 2 1 -g 2 
- P2212 _ 922 1 -g 2

From these expressions it follows that the frequency and the decre-

ment during the transient state are given by either pair of the following

expressions:

1 l 12 2 
2  

12 (
2

2 2; - 2  [84.15]
9 = ; 2(1 - g2) P1w1 2 - 2 2 o -2 2 ) 215

S_ 2 2 2 1_ 22=2; = 2 (g) 2 W-2 ~- 22) [84.16]
S21 6P2 - 2 P2 W2 2 - 2

It is seen that the frequencies of a non-linear system subject to a self-

excitation to the order of approximation considered here are the same as

those of the corresponding linear system, Equations [81.12] and [81.13], in

which the dissipative parameters, both linear and non-linear, are neglected.

Moreover, since neither 2,i nor 92 depends on the amplitude, the system is

isochronous.

E m -- ' I , ' ,



The expression [84.1 5 ] for the decrement becomes

(1 - g2 )6 1(a) 12 2 + 2[84.17
1 2 1 2 2

when p, and p2 are replaced by their values. If 6,(0) < 0, self-excitation

with frequency 9Q occurs. With the use of Equation [84.17] this condition of

self-excitation with frequency 2z1 can be written as

IR,(0)j > JRoj [84.18]

where R 1 is the critical value of the equivalent resistance Re. This criti-

cal value is

Ro= - (R ± R -W [84.19]

With the use of [84.19], Equation [84.17] can be written

(1 - g2) 61(a) 1(- 2 + . 2 - 12 ) [84.20]
- 2 2L,1  D2 - 22 2L2  R01

The decrement 61(a1) = 0 when

2 2

Re(a) = R + R L , - 2o2L2  1 2

The stationary amplitude a, of the self-excited oscillation is then obtained

from the explicit form of Re(al), as previously shown. Introducing the nota-

tion

1 g - W22 R Q2 2 R2

12 - 92 2L 1  2 -S 22 2L

we can write Equation [84.20] as

61(a) = 601 1 a)][84.22]

and similarly

62(a) = 6021 - R(a) [84.23

where 60o and 602 are the decrements of the linear circuits with frequencies

D, and 9 2 and Rol and R0 2 are the corresponding critical values of the equiva-

lent non-linear resistance Re(a). It is to be noted that the possibility of

determining p, from the second equation [84.11] depends on the condition

AP(po,O) * 0, as follows from the theorem on implicit functions. On the other

hand, the expression
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1 2p,(2p2 + + )

1 - g2 A (p 0,O) 0 1 (2

becomes

2j.Q1 %2  - Q 2) 2j (S2 _2)

2 2 2 
2 2

-- 
or

for p0 = j-- or po = JDQ2 respectively. Hence, the condition A,(p 0,O) * 0 is

fulfilled only when D2, * 2,, that is, when both circuits are not tuned in

resonance to the same frequency.

Whenever the circuits are tuned in resonance to the same frequency,

the preceding method ceases to be applicable and a special procedure indicated

in Section 86 will be necessary.

85. NON-RESONANT SELF-EXCITATION OF A QUASI-LINEAR SYSTEM

We shall now generalize the conclusions of the preceding section

which were obtained for a particular non-linear system with two degrees of

freedom.

The general condition of self-excitation of a quasi-linear system

is, as previously,

Z(p,p) + pr,(a) = 0 [85.1]

where Z(p) is the transient impedance of the linear system and pr(a) = R,(a).

In general, the impedance can be represented by a rational function,

namely,

z(p,P) = A(p,p) [85.2]
B(p, p)

where A(p,p) and B(p,p) are certain polynomials prime to each other; see Equa-

tion [84.7]., For the system shown in Figure 84.2, the quantity A(p,p) is

given by Equation [84.10], and one finds

B(p,p) = Cp( +22 + 2 ) +  [85.3]

In the relation [85.2], the system is conservative if p = 0, and the impedance

consists only of inductive and capacitive reactances. Moreover, the oscilla-

tions are undamped so that p = jS2 and Equation [85.2] becomes

z(A) = A(jQ,0) [85.4]
B(jS2,0)

This expression is, therefore, purely imaginary, that is, it is an

odd function of j2. Hence, if A(p,O) is even, B(p,O) must be odd and vice

versa. Since B(p,O) * 0, the condition for self-excitation is obviously

1111 - I IIII~i , I,, ,I



A(p,p) = 0 [85.51

If the system is non-dissipative, p = 0, and we know that the decrement is

then zero. We conclude therefore that the equation

A(p,0) = 0 [85.6]

has purely imaginary roots p = j2. Let p = j.Qo be one such root; then

A(p,0) = (p2 + 9) (p) [85.7]

where 0(jQo) * 0. The quantity A(p,p) can be expanded in a Taylor series

around p = 0; when p is very small we can write

A(p,p) = A(p,0) + pA,(p,0) [85.8]

The first term, A(p,O), contains the capacity and inductance terms; the sec-

ond, MA,(p,O), the dissipative components. Since this term is proportional

to p, ohmic resistances for a series connection, or ohmic conductances for a

parallel connection, appear in it linearly and homogeneously. It follows,

therefore, that A(p,O0) is odd and A,(p,O) is even and vice versa. In view of

this and of Equation [85.7], it is clear that A(p0 and are odd,
Sp,O) O(p,o)

since, if A(p,O) is even, B(p,O0) is odd and O(p) is even.

The characteristic equation of a non-linear system is

A(p,p) = A(p,p) + uB(p,pu)r = 0 [85.9]

In order to solve this equation we assume a solution of the form

P = j.o + 1 +' ' [85.10]

By the theorem of implicit functions, this is possible since from Equation

[85.7] we find

[AP(p,0) =io = 2j Q0 (j.Q) * 0

Using the second equation [84.11], we find

Au(j9 0,O) + B(jS20,O)re

A(jQ0 ,0)

A(jS2,0) B(jS20,O)Re
2j 0 (j 0) 2jQ0 -(jQ0)[85.11]

In view of the fact that both A,/ and B/S are odd, we conclude that the quan-
tities

6 A(jQOO) and k = [(j85.12
o= 2j0 (J90) 2j 0 0) [85.12 ]0)

are real. From Equation [85.11] we obtain the frequency and the decrement,

namely,
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9 = Do  and 6 = 6o + kR, [85.13]

If this procedure is applied to the solution of the characteristic equation of

the linear circuit

A(p,p) = 0 [8 5 .14]

one obtains to the first order the expression

p = j9o - 60 [85.151

From the second expression [85.13] it follows that the condition of

self-excitation with frequency £ = Do and 6(0) < 0 reduces to the condition

R,(0) < R o  [85.16]

where RIo = _6 is the critical value of the equivalent resistance Re(a) at

which the decrement 6 vanishes and the oscillation becomes stationary.

In conclusion, one can state that, if 90 and 60 are the frequency

and decrement of a linear system and if 92o is not tuned in resonance with

other frequencies of the system, the frequency and the decrement of a quasi-

linear system, linearized by the method of equivalent linearization, are

9 = Q0

[85.171
= 6[1 Re(a)]

As was previously mentioned, the condition of quasi-linearity per-

mits neglecting the dissipative parameters, which are assumed to be small

quantities of the first order, as far as the frequency determination is con-

cerned, since the error is of the second order, that is, of the order of A2

In other words, the quasi-linear systems in a non-resonant state are also

quasi-isochronous.

86. RESONANT SELF-EXCITATION OF A QUASI-LINEAR SYSTEM

We shall now investigate a quasi-linear system in which the two

frequencies 91 and 9 2 are adjusted so that they are the same. This condition

shall be called the resonant self-excitation of a system with several degrees

of freedom. For simplicity, we shall consider a system with two degrees of

freedom of the kind previously investigated in connection with Figure 84.2.

It is to be noted that in order to have the difference 9, - 92 of the two fre-

quencies very small, say of the first order of smallness, it is necessary that

the difference of the component, non-coupled frequencies w, and o2 of each de-

gree of freedom also be small and of the same order. This follows from Equa-

tions [81.12] and [81.13]. Moreover, the coefficient M of mutual inductance
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must also be small, that is, the coupling between the two degrees of freedom

must be rather "loose." These conditions imply that

2 = 1 + P; g = #Q [86.1]
W1

Equation [84.9] can now be written

(x2 + 1 X + 1)[X2 + 2(1 + 9P) 2x + (1 + pP)2] _ 42Q2xI = 0 [86.2]

where x = p/ow. Substituting in this equation the power series solution
x = j + px1 + ... and equating the coefficients of equal powers of p, one ob-

tains the following equation for xi:

(2jxl + j i)(2jx + J 2 + 2P) - Q2 = 0

*hen rearranged, it becomes

4x2 + 2x-1( 1 + 2 - 2jP)+ Q2 + - 2jPSj = 0 [86.3]

Determining its roots, and using the notations , - 2 = M and Q2 + P 2 = N,
one obtains to the second order the following expression for x = j + px 1 :

x = - ±M - 4N + /16P 2M 2 + (M -4N)
2 +

+J[ 1  2  
4  V 1/4N - M2 + Y/16P2M2 + (M2 - 4N)] [86.4]

Putting

(Re + R1 - R 2)
2 C 2 2 - 4 g2 -(1 = 2

and [86.5]

4(Re + R - R,)2 C 122(1 - =2 d2

one obtains to the first order the following expression

SR,+ R2 + Re T Lw 1  Vd2 + 72
4L1

+ + 2(W2 - ) ± 7 + [86.6]

which gives the frequency 9 and the decrement 6 as

, = Q,(a) - 1 + 2 + 1 /- + d2
2 4

[86.7]

6 = d(a) = R, + R 2 + Re - L / + d +
4L 1



or
Q = 2 1(a) 2 1- 4 7 + / d 2  + 7

2

2 [86.8]

6 = 62 (a) R + R 2 + Re + Lw / + Vd 2 + 2

4L,

The essential feature of these expressions is that both the frequency S2(a) and

the decrement 6(a) are non-linear functions of Re(a). This leads to the fol-

lowing important conclusion:

When the oscillatory system is tuned in resonance so that w, ; W2 w w, the

system ceases to be isochronous.

Developing the expressions [86.7] and [86.8] in terms of the param-

eters of the system, we obtain the following two sets of expressions for P(a)

and 6(a):

I. If (Re + R i - R 2 )Cl, > 2g, then

Q1(a) = w; 61(a) = Re + R, + R - L- (Re + R - R2 )2
1

2 - 4g 2

4L 1

and [86.9]

Q2(a) = w; 62 (a) = Re + Ri + R2 + LiW (Re + R1 - R 2 )
2 C 2 - 4g 2

4L,

2. If (Re + R 1 - R 2)C 1w < 2g, then

Q (a) = 1+ V4g2 - (Re + R1 - R 2 )2 12 2l 61(a) =+ R,2
4 (a= 1 , 4L 1

and [86.10]

1 R + R , + R 2Q2 (a) = 1 V4g2 - + R - R) 1 2 2 62(a) - e 4L 2

It is thus seen that the condition of resonance of a quasi-linear

system with two degrees of freedom introduces a radical change in the behavior

of the system. In a later chapter it will be shown that resonance in a multi-

periodic system is characterized by another feature, namely, the differential

equations of the first approximation do not permit a separation of variables

although in a non-resonant condition such a separation is always possible and

simplifies the problem appreciably.



CHAPTER XIV

SUBHARMONICS AND FREQUENCY DEMULTIPLICATION

87. COMBINATION TONES; SUBHARMONICS

The non-linearity of an oscillatory system accounts for the appear-

ance of additional frequencies which we shall now investigate.

This phenomenon was first studied by Helmholtz (3) in connection

with the theory of physiological acoustics. He discovered that the ear re-

ceives sounds which are not contained in the emitted acoustic radiation, and

he has shown how the slightly funnel-shaped form of the tympanic membrane of

the ear may account for unsymmetrical oscillations represented by a non-linear

differential equation of the form

x + (x = - ' 2 + X(t) [87.1]

where x is the displacement of the membrane and X is the exciting force pro-

duced by the periodically varying pressure of a sound wave. If the sound

wave contains two frequencies, say w1 and w 2 , the function X is of the form

X = a, cos w1 t + a2 cos w 2t. It can be shown that the oscillation expressed

by Equation [87.1] contains, in addition to the frequencies wi and w 2, the

frequencies o, - w2 and w, + w 2 which Helmholtz calls combination tones.

It is simpler to reach these conclusions from the well-known prin-

ciples of modern radio technique. Consider a non-linear conductor of elec-

tricity, an electron tube, whose characteristic is

i a = f(v) [87.2]

where ia is the anode current and v is the grid potential. We shall be inter-

ested only in the alternating components of these quantities. It has been

shown in preceding chapters that this experimental relation can always be ex-

pressed in the form

ia = a1v + a2v
2 + a3v' + [87.3]

The number of terms in this series depends on the degree of the approximation

desired, and it is shown (4) that in practice the coefficients decrease with

sufficient rapidity to justify the retention of only a few terms. In order to

simplify the argument, let us assume that the impressed grid voltage is of the

form

v = k(cos Wt + cosw 2 t) [87.4]

that is, it is composed of two alternating voltages in series having the same

amplitude k but two different frequencies wi and w 2. Substituting [87.4] into

Equation [87.3], one obtains
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i = alk(coswlt + cosw 2t) + a2k
2(cos 1lt + cosw 2t)

2 + a3k3(coswlt + cosw 2t)
3 [87.5]

when the expansion is limited to the first three terms. The first term con-

tains the original frequencies w1 and w2 ; the second gives the frequencies

2w 1 , 2w 2, w1 + w2, and wl - W2 ; the third term yields the frequencies wl, 3wl,

w 2, 3w 2, 2wi + w 2, 2wi - w2, 2w 2 + w1 , and 2w 2 - w1 . The current ia will con-

tain, therefore, the harmonics of the following frequencies:

Wl, W2, 201, 20 2, 31, 3(2, 1  0 2, 1 - 2, 2w1 + w2, 2w0 - w2 , 2w 2 + w1 , 202 - (1

Thus, for example, if w1 = 27 x 100 and ( 2 
= 2r x 120, where f, = 100 cycles

per second and f2 = 120 cycles per second, the frequency spectrum of ia will

be composed of the following frequencies:

20, 80, 1100, 120,1 140, 200, 220, 240, 300, 320, 360

It is seen that the combination frequencies spread out on both sides of the

impressed frequencies, f, = 100 and f2 = 120. In the study of this phenom-

enon, attention is usually centered on the frequencies lower than the im-

pressed ones (in this case, f = 20 and f = 80); these lower frequencies are

called subharmonics. The term "subharmonics," instead of the expression

"combination harmonics," is sometimes applied, although perhaps improperly,

to terms of the form

Wi = mw1 + nw 2  [87.6]

The problem of producing subharmonics in electric circuits is sometimes called

the problem of frequency demultiplication.

In Equation [87.6], m and n are integers which depend upon the na-

ture of the polynomial. Thus, for instance, in the previous example these

combinations are (0,0); (1,0); (2,0); (3,0); (0,1); (0,2); (0,3); (1,1);

(1,-1); (1,2); (1,-2); (2,1); (2,-1).

The terms (0,0) are constants arising from the trigonometric trans-

formations.

As follows from the foregoing analysis, the combination frequencies

are due exclusively to the non-linearity of the circuit. This can be demon-

strated by the following experiment mentioned by H.J. Reich (4). The volt-

ages'from two audio-frequency oscillators are filtered so as to obtain two

pure sinusoidal oscillations of angular frequencies wo and W 2, which are

applied to the grid of an electron tube. The voltage across the anode resist-

ance is applied to the input of a low-pass filter. The various combination

frequencies can thus be heard in a telephone connected to the output of the

filter. If the oscillators' frequencies are changed, the whole spectrum of

the combination frequencies changes, but the relation [87.6] holds for any
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value of wo or w2. If, instead of a low-pass filter, a high-pass filter is

provided, the high-frequency part of the spectrum of the combination frequen-

cies can also be recorded. The relation [87.6] is applicable throughout the

whole spectrum. If an oscillating grid potential of the form v = a, cos w(t +

+ a2 cos w2 t is applied in the region where the electron-tube characteristic

is fairly rectilinear, the spectrum of the combination frequencies fades away.

This shows that the combination frequencies are due to the non-linearity of
the circuit.

If a combination harmonic of amplitude en,m is applied to a linear

network of impedance Z(jQ), the current in,m due to this harmonic will be

n,m = enm COS (n1 + m2)t + n + + m2 [8771
Z j(n9Q + m 2)]

88. EQUIVALENT LINEARIZATION FOR MULTIPERIODIC SYSTEMS
In the preceding chapter a quasi-linear system with two degrees of

freedom was discussed. It was found that solutions in terms of frequency and

decrement were given, not by one set of relations, but by two such sets. Thus,
for example, we always have two pairs of relations

9 = ,21(a); 6 = 61(a)
and

2 = Q2(a); 6 = 62(a)

In still more complicated systems there may be a still greater num-
ber of pairs of solutions:

D = Ql(a); 6 = 6,l(a)

S2 = S2n(a); 6 = 6.(a)

On the basis of the method of the first approximation, Chapter X, this means
that the most general oscillatory system is characterized by oscillations of

the form

i = i 1 = a, cos 01

i == a2 COS 2

i= in = ancos n

* From now on we shall designate the component frequencies by capital letters 91 and ,2, reserving
the small letters w, and w2 for the frequencies of uncoupled linear systems, as was done in the pre-
ceding chapter.
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It is recalled that b, the total phase, in these expressions contains both

the frequency Qk and the ordinary phase Ok, as follows from the relation

Ok = 9 kt + 9k.

The most general forms of the equations of the first approximation

for both ak and Ok are

da= - 6k k(a)a dt k (a); k = 1, 2, *, n [88.1]

If the system is linear, the principle of superposition is applicable, that

is,

i = i 1 + i 2 + + i n = a 1cosl, + a 2cos 0 2 +' + a,cos0n [88.2]

For non-linear systems this ceases to be applicable, and, if we wish to make

use of the principle of superposition, we must introduce further definitions

of the equivalent parameters of multiperiodic systems. In order to do this,

it is sufficient to extend the Principle of Equivalent Linearization to sys-

tems where two distinct oscillations exist. This presupposes that the oscil-

lations are not tuned in resonance with each other. We shall consider again

the system shown in Figure 84.2 and note that its impedance across the ter-

minals of the non-linear conductor N is

(912 - 92 + 2j6o01 )(9 2
2 - 22 + 2j6029)

Cj9w1
2(w 2

2 _ 92 + 2jp2 2 ) [88

where ,1 and S2 are the angular frequencies, and do, and 602 are the decre-

ments of the linear system given by Equations [81.12], [81.13], and [84.21],

respectively, to the first order of small quantities. Equation [88.3] is ob-

tained from Equation [84.6] by making use of Equations [84.10] and [84.14].

Since for quasi-linear systems the decrements do, and d02 are small, one can

put do = 601; 602 = U 2 , and we obtain

Z(j) = (92 - 92 + 2j 1#9)(922 - 92 + 2j 2 9)Z [88.4]
= Cjw 1

2(w 2
2 - 92 + 2jip 2w 2

9 )

where 1, 2, and 2 are small. This impedance is impressed on a non-linear

conductor having the characteristic

e = - F(i) = - p f(i) [88.51

where # emphasizes again the quasi-linearity of the example considered here.

The function f(i) can be approximated in practice by a polynomial. If # = 0,

the system is linear and the principle of superposition holds, so that

' = i 1 + i 2 = a, cos(9 1t + €1) + a2 cos(9 2 t + &2) [88.6]

where a1, a 2, €1, and 02 are constants.
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If p * 0 but very small, one can still consider Equation [88.6] as

approximately correct and substitute it in Equation [88.5]. Thus,

e = - af(i) = - f(il + i 2)= - Aifalcos(9 1t + 1) + a 2 cos(S 2t + 2)] [88.7]

Consider now the function of the two variables b1 and 0 2, namely,

f(a, cos ip, + a2 cos 02) = f(z)

Since f(z) is a polynomial, it can be represented as a finite sum of harmonics

of the type

An,m cos (n@1 + m 2)

so that

f(a, cos ip, + a2 cos i2) = ZZ An,m cos(nl + m 2) [88.8]
n m

where the index n runs from zero through the positive integers and where m has

positive integral values for n = 0 and runs through the negative integers for

n * 0. For a polynomial of the third degree these values for m and n were

given in the preceding section. From [88.7] and [88.8] it follows that

e = - PZZAn, mcos[(nQ + mQ2 )t + n1l + m0 2] [88.9]
n m

Hence the corresponding combination harmonic in,m of the current will be

in,m = - An,m cos [n + mQ2)t + no, + m' 2] [88.10]

Z[j(n91 + m9 2 )]

and the total current will be the sum of all these harmonics.

It is apparent that the amplitude of each combination harmonic will

be

Sin,mi =Ann
IZ[j(nS2 + m.Q2)]

Written explicitly, in view of [88.4], this expression becomes
[88.11]

=An,mCo (fn12 + m9 2 ) - (nQ1 + m.Q2)2] 2+ 4p 2 (n.Q + mS,)

n V[2- (n.'+ m +Q ( u 1 m Q2 )+ 4p2
1  2 -(n 1 - 2)2 2-+ 4p 2 z](nS + m9 2)

From this expression it is observed that, if for some values of n and mnei-

ther of the expressions (ng + maS2)2 - S2 or (n91 + mQ2)2 - D22 becomes

small, the amplitudes i.n,mI will be small because of the small factor p.

If, however, for a given pair of numbers (n and m), one of these ex-

pressions, or, which is the same, n , + (m 1)92 or (n t 1)91 + mQ,2, becomes
small and of the first order, or zero, both the numerator and the denominator



M1 l01NY 1NUl 1 I 11

in [88.11] become small and of the same order so that in,ml may be finite.

This happens either for n = 1, m = 0 or for n = 0, m = 1.

It is seen from [88.9] that all harmonics of e are small except the

two principal harmonics

- pA1,o cos (.t + #1); - pAo, cos ( 2t + 2) [88. 12]

Hence, aside from the two corresponding harmonics of current, all others are

very small and can be neglected. Thus we have

e = - pA 1 ,o cos (Qt + 01) - pAo, 1 cos(Q 2 t + 02) [88.13

From Equations [88.51, [88.7], and [88.13], by the Principle of Equivalent

Linearization, we obtain

pA7,0  -2 f F(alcos 01 + a 2 cos .2)cos 0,1do ld 2

[88.14]
2r2r

pAo = ~fjF(aIlcos 01 + a 2 cos 0 2) os 0 2 d idb 2
A'l =272 00

Defining the equivalent non-linear parameters by the expressions

Re - 12 F(a cos l + a 2 Cos 2 )COS Old 1d 2d

and [88.151

R: = 1 f fF(a cos 01 + a 2 cos 0 2)COS 2 dod0 2
22a2 0

one has

pA 1,o = R.'al and /uAo, 1 = R'"a2

and, by [88.13],

e = - (Rei + R"'i2) [88.16]

This equation shows that in the example of non-resonance considered here the

non-linear characteristic can be replaced by the corresponding linear one in

which the variables il and i2 can be separated in the first approximation.

This generalization of the Principle of Equivalent Linearization for a non-

resonant system simplifies the problem because the variables can be separated.

We obtain the following systems of equations of the first approxi-

mation for the equivalent system:

dal & 4; da2

dt dt
[88.17]

d -1 , d, 2 = t
dt ' dt

Since the total phases are 01 = 9lt + 0, and 02 = Q 2t + 0, one can write the

preceding equations in the form
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dal da 2- 6 'a ,;  - - 6"a2dt dt
[88.18]

d = 9' - 21;d2 =9" - 522
dt dt

In view of [88.16], self-excitation of the equivalent linearized system can be

represented by the equation

Z(j2' - d')i + Z(js2" - 6")i 2 + Rli 1 + R'i 2 = 0 [88.19]

whence

Z(j2' - 6') + R' = 0; Z(j52" - 6") + Re' = 0 [88.20]

Because 01 and 02 are constants, one has from [84.23]

5' = 21; " = 22; 6' = 61(1 - ; = d.6 1 - ) [88.21]

where Rol and R02 are the critical values of the equivalent parameters Re' and

Re" corresponding to self-excitation with frequencies 9 1 and QS2 respectively.

One concludes, therefore, that in the first approximation and in the

absence of resonance,

i = acos(21t + 01)+ a2 cos(S22t + 02) [88.22]

the principle of superposition still holds, and the stationary amplitudes a1
and a 2 of the quasi-linear system are given by the system of differential

equations in which the variables can be separated, namely,

da= - 11 - )a; = - 1 a 2  [88.23]

This result can be generalized for systems with n frequencies; however, this

generalization will not be presented here.

89. INTERNAL SUBHARMONIC RESONANCE

In the theory of linear oscillations, an oscillating system is said

to be in "resonance" when the frequency of the external exciting force coin-

cides with the frequency of the system. In non-linear systems the situation,
as was shown, is far more complicated.

We saw that a non-linear system with one degree of freedom acted

upon by an exciting force with two or more component frequencies has a dis-

crete spectrum of combination frequencies which are more numerous than the

exciting frequencies.

On the other hand, a linear system with several degrees of freedom

possesses the so-called coupled frequencies, the number of which is equal to

that of the degrees of freedom. For non-linear systems with several degrees

III Y0ll4li lN1 ill m hIllMIIlmI



of freedom, the situation becomes very complicated. In fact, if one considers

one particular circuit of the system that is coupled to other circuits, the

excitation of this circuit occurs through couplings and, by virtue of the non-

linearity, is resolved into combination frequencies which, in turn, react on

the other circuits and cause combination frequencies in these circuits if they

are non-linear. It must be noted, however, that not all frequencies may ap-

pear in the process of self-excitation but only those for which the initial

decrement dj(0) < 0. Moreover, as long as the principal frequencies do not

coalesce, the method of equivalent linearization introduces a further simpli-

fication by providing a set of differential equations of the first approxima-

tion in which the variables can be separated.

A new complication arises, however, when two frequencies of the

spectrum are nearly the same and coalesce at the limit; we shall call this

internal resonance of the system. It occurs whenever two or more component

parts of the system are tuned to the same frequency. The word internal used

in this definition merely emphasizes the fact that the actuation is effected

through couplings without involving any externally impressed periodic force.

We shall consider again the system with two degrees of freedom shown

in Figure 84.2 which was the basis for our discussion of the non-resonant con-

dition. The impedance of the system is

Z(~9) = (92 - Q 2 + 2j~1 UQ)(S2 2 - 92 + 2j 2#9) [89.1

jCW 12 9(W - 92 + 2j4 2 ( 2 D)

This impedance is impressed on a non-linear element Nwith characteristic

e = - F(i) = - puf(i) [89.2]

We shall now assume that the ratio of the frequencies 91 and 2 of

the linear system is not far from being a rational number; this fact is ex-

pressed by the following relations:

2=2 1 +  a with - * 0 [89.3]
S S

where, without any loss of generality, r and s are relatively prime integers,

and a is a finite number so that #a is small and of the first order. It is

apparent that for p = 0 the system degenerates into a linear one with coupled

frequencies

21 and 92 = 091

In this case the principle of superposition holds; i = i I + i 2 where i =

a, cos i 1 and i2 = a 2 cos 02; 01 and 0 2 , the total phases, are equal to

9 1 t + 01 and Q2 t + 02 respectively; and a1, a 2 , 1,, and 02 are constants

determined by the initial conditions.



For # * 0 but very small we can still use the principle of super-

position to the first order of approximation, as was just shown, and write

e = - f[al cos (9t + 1) + a2 cos (r. 1 t + 02 [89.4]

The function f is periodic with period 2rs. Since we assume, on the other
21"

hand, that this function is approximated by a polynomial, it is possible to

express the function by a limited number of terms of a Fourier series. Thus

we obtain

f [acos(9Qt + t ) + a 2 cos aQt + 02 = [Am COS - 1 t + Bmsin 9 1t [89.5]
m>0

where A, and B, are certain functions of the variables a1, a2, 1, and 2'

The harmonic Im of the current will then be

- #[Am COs - D2 t + Bmsin m . 1t
i, = s [89.6]

Since the factor # is small, all harmonics of the current are small except the

two harmonics Ir and I,, with frequencies T-S2 and S,, which remain finite in

spite of the smallness of #; see Equation [88.11]. If, therefore, one neg-

lects in the first approximation all harmonics Im for which m * r and m * s,

Expression [89.5] reduces to

e = - ACOSs-Qt + Brsin rft - p(A, eos2 1 t + B,sing91 t) [89.7]

The expressions in parentheses in this equation can be written

A, cosr S2t + B, sin r Qlt = CCos r)t + 2) + Drsin 1t + 42)

[89.8]
A, cos 1t + B, sin Q1t = Ccos (91t + &1) + D, sin(9lt + €1)

where the constants Cr, Dr, C., and D, are given by the Fourier procedure:

Cr = - a cos r - (s - r + a 2 cos rr os rr dr
0

Dr = ff(a, cosT - (s - r + a 2 COS rT) sin r--d--

2r [89.9]
C, = f (a cos s + a2 cos[rr + (g - r))cos s7dr

2= rJ e cos T ± a2 cos r + -- (s4 2  - 1 i nO - STd
0



If we put s 2 - r 1 = 0 and introduce the notations

1 ;r 0
R fJF Fa Cos sT - + a 2 cos r Cos rT dr

7ra2 1 + 1

Ye", fFia1 cossr - + a 2 cosr sin rrdr

[89.10]

ral [a cos sr + a 2 cos (r- + cos sr dr

Ye 1 Fa 1 cos sr + a2 cos (r + 0 )in rd
ra1 o s

the expressions in Equation [89.7] become

S(Ar COS - t + Br sin _jt) Re"a2 cos -lt + 2) - Y"a 2 sin r t + 2)

- (R' + jY")a 2 cos(s9lt + '2) [89.11 ]

p(A, cos 1 t + B, sin S21t) = Ralcos(9lt + 01) - Y'a sin(Dlt + 01)

= (Re + jYe')alcos(9 t + &1) [89.12]

When these values are substituted into Equation [89.7], it becomes

e -- [(R' + jYe')i1 + (Re" + jY")i 2] [89.1

It is seen that in systems having internal resonance the non-linear

characteristic can be replaced by the equivalent linear one given by Equation

[89.13]. The difference between resonant and non-resonant systems is that in

resonant systems the equivalent linear impedances are complex quantities,

whereas in non-resonant systems they are real ones.

This modification of the equivalent parameters for internal reso-

nance introduces an essential difference in the form of the equations of the

first approximation. For example, let 9', 9", d', and d"be the frequencies

and decrements of the equivalent linear system. The equations of the first

approximation are then

da1 _da 2a= - 'a1; - J"a2
dt dt

[89.14]
d ib1  , d 2 _ ,
dt dt

where, by [88.6], 01 = a1t + ,1 and 0 2 = 9 2 t + 02 are the total phases. Equa-

tions [89 .14] become
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dal da2= - 6'a; da2  a,dt dt
[89.151

d1 _ 2' - 21; " - 22
dt dt

For dynamical equilibrium the impedance drop and the impressed voltage must

balance each other for both oscillations of the linearized systems; this gives

Z(j2' - d')il + Z(j" - 6")2 + (Re' + jY')i + (Re" + jYe")i2 = 0 [89.16]

Hence

Z(j2' - 6') + (Re' + jYe') = 0; Z(jQ" - 6") + (R" + jYe") = 0 [89.17]

It is noted that these equations are the same as Equation [88.20] except that

Re is now replaced by R, + jYe. The algebraic work for Equations [89.16] and

[89.17] is identical to that for Equation [88.20], provided one does not sepa-

rate the real and the complex terms. Hence the solution of Equations [89.17]

is the same as that of [85.17], which can be written as

pi = 2i + 6[ 1 Re(a)

Without repeating the procedure, we can, therefore, write directly

' = D, + 61 -; 9" = 92 + 62, [89.18]
Rol R02

6' = 6(1 - Re); 6" = 62(1 - R) [89.19]

Hence, for the first approximation in a resonant system, one obtains

i = a, cos( 1t + 1) + a 2 cos r3 t + ¢2) [89.20]

where a1 , a 2 , 01, and 02 are given by the equations

dal R a da 2 R a
a= - 6 1  a; -a - - Re

dt Ro" dt R2
[89.21]

dl 61 d02 r 62 ,,ci Ye,; 2= r2 1 + ,
dt Ro d t s R0 2

It is noted that the four equivalent parameters Re', Re", Ye', and Ye" appear-

ing in these equations are now functions of only three variables a,, a2 , and

0, as follows from [89.10]. The last two equations [89.21] can then be

written

de d 2 2 2 ,, 1

dt Sdt rt -s02 - r1 + s Y - R-Ye [89.22]
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For a steady-state condition, a, = constant, a2 = constant, and

0 = constant, which gives

1 Re' 0; Re"
Rol R02

[89.23]

s92 - rQ 1 + s Ye"- r 1 Ye' 0
R02 Rol

The last equation can be written

s 92 + Y")-  r(.Q + L e') = sQ" - r' = 0 [89.2)4]

R0 Ro

where 9' = 9, + - Y' and "= 9 2 
+ '2 Ye

Equation [89.24] shows that the stationary oscillation of the sys-

tem occurs with two frequencies S2' and 9" whose ratio is a rational number.

In addition to these frequencies there exists a frequency spectrum correspond-

ing to the harmonics of the order L9', as can be shown from the study of the

refined first approximation, which we omit here.

90. SYNCHRONIZATION

In the previous notation the total phases are 01 = 21t + 01 and

= 1t + ¢2, whence -2 - = '2 1- = 6. For a stationary state

dO/dt = 0 and 0 = constant, which gives

sb2 - rol1 = 0 = constant [90.1]

Thus the total phases are "locked in synchronism" with each other.

The question now arises whether the condition [90.1] is stable. Since the

four equivalent parameters Re', Re", Ye', and Ye" are functions of the three

variables a1, a2, and 0, consider special values alo, a 20, and 0o of these

parameters corresponding to the stationary condition of the system. Following

the method of variational equations, Chapter III, and considering arbitrary

small increments Aax, Aa2 , and AO of the first order of small quantities, one

obtains

d Aal = R' (a ,  )a a + R' (ao, 0)a 2 + Ro'(al0, a20,60)A
dt al= 10a201 a2 210° ,)a + 020(a 0

d Aa2  R(a 10 ,a 20 0)al + 2 (a 10,a 2 0 0 )Aa 2 + F"(ao, a2 0 ,o0 )AO [90.2]

d
d- AO = Fal(ao, a o,6o)Aa, + F2 10' 2, ) 2 F 10o 20)0
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where
S Re' , 21 Re"

and [90.3]

F = s92 - r 9 1 + s Ye" - Ye'

The question of stability is reduced to the investigation of the nature of

the roots of the characteristic equation of the variational equations [90.2].

If all real parts of these roots are negative, the synchronized oscillations

are stable; if any one of these parts is positive, the synchronization is un-

stable. Assume that the oscillations are stable; then, for sufficiently small

departures of the parameters characterizing a disturbance in the synchronized

condition [90.1], these departures satisfy the variational equations [90.2].

It is apparent that this is possible only for a certain range of Aa1 , da 2,
and AO around the values alo, a 2o, and O8. If one exceeds this range, the

conditions of stability may no longer be fulfilled.

The interval of variation of the parameters Aa, Aa 2 , and AO which

results in the stable condition of synchronized oscillations [90.1] is called

the zone of synchronization. Non-linear systems are characterized by the

presence of such a zone. It is absent in linear systems, or, in other words,

one can say that linear systems are characterized by a zone of synchronization

reduced to zero. It is thus seen that the phenomenon of synchronization is a

characteristic property of non-linear internal resonance.

91. INTERNAL RESONANCE OF THE ORDER ONE

Consider now a particularly important case when r = 8, that is, when

O9 5- 22, and 2 /w 1 = 1 + pP, and g = pQ; see Section 86. For p = 0, wo = o 2 =
c and for the first approximation we assume

i = a (cos(wt + 01) + a 2 cos(wt + 02) [91.1]

Putting a1 cos ,1 + a2 cos 02 = a cos O and a1 sin l, + a 2 sin O2 =

a sin $, one has

a 2 = a 2 + a2
2 + 2ala 2 COS ( 1 - 2) [91.2]

Equation [91.1] can be written

i = acos(wt + 0) [91.3]

Therefore, one has a simple relation

Z(jw) + Re(a) = 0 [91.4]

It was shown in Section 86 that the frequencies 9 1(a) and 9Q2(a) and

the decrements 41(a) and d2(a) are given by Equations [86.9].
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The equations of the first approximation for the amplitudes a, and

a 2 and phases Q1 and Q2 in Equation [91.1] are therefore

dal - d(a)a,; = d 62(a)a2dt dt
[91.51

d = .Ql(a)- w; d02 Q2 (a)-

dt dt

where a is given by Equation [91.2] and 61 (a), 62 (a), 2 1(a), and 9 2 (a) are ob-

tained from Equations [86.7] and [86.8]. It is apparent that, if 61(0) > 0

and 62(0) > 0, there will be no self-excitation. If, however, at least one

of these quantities is negative, self-excitation from rest will take place.

For a steady-state condition the resultant amplitude a is a constant, and from

Equations [91.51

a, = aloe - (a)t a 2 = a 2 0 e 2(a)t

1 1o + [91(a)- ]t; 0 020 + [ 2 (a)- wit [91.6

where alo, a20, Io, and 20 are the integration constants. From Equation

[91.2] one has

- 2dl(a)t -+ a - 24 2 (a)t

a2 -- a20e (+ a2e +

+ 2ao a2 (a)+ 62(a)]t ([9 2(a) - 1(a)]t + -)
+ 2aloa2oe cos +20 - [91.7]

If 6 1(a) = 0, then a = alo = a,; if 62 (a) = 0, then a = a 20o a 2. In the

first case the oscillation will occur with frequency Q1(a) and its harmonics;

in the second, with S2 (a) and its harmonics.

The oscillations in the first case will be stable if > 0 and

62 > 0, which means that the oscillation with frequency 9 2(a) will die out.

In the second case the oscillations will be stable if ! > 0 and 61 > 0,ea
that is, the oscillation 91(a) will die out.

For a resonant system, the investigation of the four equations

[91.5] is reduced to an investigation of three equations; the first two give

a, and a2, and the third gives the phase difference 0 = 01 - 02.

92. METHOD OF EQUIVALENT LINEARIZATION IN QUASI-LINEAR
SYSTEMS WITH SEVERAL FREQUENCIES

The principal points of the method of equivalent linearization were

outlined in Chapter XII in connection with quasi-linear systems which have-

only one frequency. We now propose to generalize these conclusions so that

they are applicable when, because, of some couplings provided in the system,

several frdquencies are possible.

1111,



Let us assume that the oscillations are of the form

S= X1 + ... + X, [92.1]

where x, = a, cos (wat + .), *.. , x, = an cos (oWt + ,). Substituting

Equation [92.1] into the expression for the characteristic of a non-linear
conductor

y = F(x) [92.2]

one obtains, in general, a Fourier series. Let us keep in this series only
those terms which contain the original frequencies w1 , "'" , Wn and let yl,
"'" , Yn be these terms. Since any term yi will have the same frequency as
the corresponding term xi, we can write y, = Si x so that Expression [92.2]
becomes

Y = Y + '+ Yn = S1i 1 + + Sn Xn [92.3]

It is apparent that this procedure leads to the definition of the
equivalent parameters S1, - , S, on the basis of the Principle of Harmonic
Balance, Section 77. One notes also that the non-linear expression [92.2]
has been replaced by an equivalent linear one [92.3]. Moreover, it is also
clear that by adopting this procedure the terms expressing combination fre-
quencies have been omitted inasmuch as the frequencies of these terms are
generally different from the original frequencies wl, ... , w. appearing in
Expression [92.3].

After the frequencies wie and the decrements die of the equivalent
linear system have been determined, the equations of the first approximation
so obtained can be written in the form

dal dan
dt = - 1al dt - 6nean [92.4]

dt dan

dt = (le - '1; dt = wne - Wn [92.5]

In order to improve the accuracy of the approximation, the terms
with combination harmonics omitted in the first approximation are added on
the right side of these equations and appear as external forcing terms. When
there are regular forcing terms, they are added to the harmonics just men-
tioned. Since the equation is now linear, there is no difficulty in carrying
this procedure further.

In setting up the original differential equations, it is essential
to introduce non-linear terms with a small parameter p so that for = 0 one
has a linear system without damping.

In the equations of the first approximation only the terms contain-
ing the first power of the parameter p are retained.
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Let us apply these considerations to a linear system characterized

by the impedance Z(jw); the relation between the current and voltage is then

e = Z(jo)i.

If the impedance is of the form Z(jw) = Q(jj) the preceding rela-

tion becomes

Q(jo)e = P(jo)i [92.6]

Since for a steady state the operator jw is d/dt, the preceding expression

can also be written

(aQW)e = PT )i [92.7]

As was shown in Section 84, Equation [92.7] is also valid for a

transient state. In non-linear systems, as we saw, the current and voltage

have a non-linear relation

e = - F(i) = - 1uf(i)

so that Equation [92.7] becomes

p , _ i Q )f () [92.8]

When p = 0 one has a linear differential equation

P (-, 0 i = 0
dt'

Thus, for example, instead of Equations [88.4] and [88.5], we can write

[92.9]
d2 d t d df d d
dt2 + 2. p + 1 dt2 + 2p2d + d .2)i -- -C 1

2 dt d-- + 2. 1 2 d+ 22)

which is of the same form as [92.8].

Since we know that for linear systems, that is, for systems in which

p = 0, this equation has two cbupled frequencies, let us try to form a non-

linear solutiqn (p * 0) in the form

i= a, cos 1 + a2 cos 0 2 + tzl(a1,a2, 0 1, 0 2) + 0u 
2

2(al,a 2, 1,0 2) + . .. [92.10]

where z1, z2 , ... are periodic functions with period 27r and the functions a1,

a2, 01, and 0 2 satisfy expressions of the form

da1 = 4 Xn(a, a2) + 2X12(al, 2) +

dt = pX21(a1, a2) + u2X 22 (al,a2) +

[92.11]

- Q, + pYn(al, a) + p2 Y12 (a,, a2) ± [dt+

d = S, + tY21 (a,a2) + 1u2Y22(al, a +

-t 11111 , ,



Substituting Expression [92.10] into Equation [92.9] and taking into

account Equations [92.11], we can develop the result of the substitution into

a power series of the parameter p. Equating the coefficients of equal powers

of p, one obtains the expressions for z1 , z2 , ... ; X 11, X 12 , " X 21 , X 22 ,

; Y11, Y 12, ... ; and Y21, Y22,
Carrying out these calculations for terms containing the first power

of u, that is, for z1, X11, X 21, Y11 , and Y 21 , one observes that the equations

of the first approximation so obtained are precisely those which were obtained

directly by the method of equivalent linearization. If, however, one retains

the first three terms in Equation [92.10], the calculation results in what

have previously been called equations of the improved first approximation,

Section 68, and so on for approximations of higher orders.

To summarize these conclusions, it can be stated that the method of

equivalent linearization, which was more or less postulated in Part II, can

be justified on the basis of the preceding analysis and can be generalized for

approximations of higher orders. It can be shown by following the argument

just outlined that it is possible to form linearized differential equations

whose solutions satisfy the original differential equations with accuracy of

the order p, p 2, .... . For a more detailed proof of this proposition, the

reader is referred to the Kryloff-Bogoliuboff text, Reference (1), pages 241

to 246.
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CHAPTER XV

EXTERNAL PERIODIC EXCITATION OF QUASI-LINEAR SYSTEMS

In preceding chapters we have been concerned with the phenomena of

self-excitation of quasi-linear systems of the autonomous type, that is,

quasi-linear systems in which the independent variable t, meaning time, does

not appear explicitly in the differential equations. We shall now indicate

how the Kryloff-Bogoliuboff theory of quasi-linear systems can be applied to

systems having an external periodic excitation. We shall return to this ques-

tion later in connection with the Mandelstam-Papalexi method based on the the-

ory of Poincar6.

93. EQUATIONS OF THE FIRST APPROXIMATION FOR
A PERIODIC NON-RESONANT EXCITATION

The quasi-linear differential equation for a system with an external

excitation has the form

mi + kx = pf(t,x,i) [93.1]

in which the time t appears explicitly.

We shall consider only the case where f(t,x,i) can'be written in

the form

N

f(t,x,X) = fo(x,i) + [fn,(x,I)cosynt + fn2(x,x)sinyt] [93.2]
n=O

where fo, fi, and fn2 are certain polynomials in x and x.

In the terminology of electri.c-circuit theory, the motion repre-

sented by Equation [93.2] may be considered a current produced by an electro-

motive force e = pf(t,x,x) applied to a linear impedance Z(jw o) = mjw o + k

It was mentioned in Chapter XIII that in electrical problems x corresponds to

the charge in the capacitor and x to the current.

When p = 0, the system [93.1] becomes a linear one whose solution

is
x = asin(wot + €)

[93.3]
= awocos(wot + )

where w, = Vk-m and o are two constants of integration. When p * 0 but suffi-

ciently small, the expressions [.93.3] appear as generating solutions (compare

with the method of Poincare in Chapter VIII) with which we start the approx-

imation. One may consider these expressions as an approximation of zero order.

Our purpose will be to establish an approximation of the first order which

will characterize the quasi-linear system with a degree of accuracy of the

order of #2.
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The non-linear term becomes

e = pf[t, a sin (wot + 0), awo cos(wot + )]

Since the functions fo, fj 1 , and

are of the form

fo(a sin ,, awo cos ,) =

fnl(asin , awocos,) =

f,, 2(asint,, aocosW) =

Using these expressions and also

linear term [93.4] as

N'

e = pZ [gk(a)cosk(wot
k=0

N N'

+ /j [hnni,kn=0k=O

N N'

+± Z Z [9gln1, k (a
n=0 k=0

N N'

SZZ n1,k(a
n=Ok=O

fn2 are polynomials, their Fourier expansions

N'

'[ gk(a) cos k 0 + hk(a)sin k ]
k_0

Ng

Z[gn,k(a)coskO + hl,k(a)sinkO]
k>0

[93.51

NP

S[ n2,k (a)cos k + hn2,k(a) sin kb]
k=O

the expansion [93.2], one can write the non-

+ ) + hk(a)sink(wot + 0)] +

+ gn2,k(a)] sin[(kwo + ,)t + kO] +

- hfl2,k(a)] cos[(kwo + y) t + kO] +

+ hn2,k(a)] cos [(kwo - y,)t + k ] +

N N'

+ 2[hk(al,k )
n= 0 k=0

- gf 2,k(a)] sin [(kwo - y) t + k¢]

It is noted that the frequencies ko + y, and ko o

these expressions are combination frequencies like those we

encountered.

- y. appearing in

have previously

We shall limit our study in this section to systems in which none

of the combination frequencies approaches or is equal to the frequency Wo.
In other words

[kwt +y,] * w and [kw,- n] * o

As before, we call this case the non-resonant case. From the form

of Expression [93.6] one ascertains that the only harmonic having the fre-

quency wo is the harmonic

el = /pg1 (a) cos(wot + 0) + #h 1 (a) sin (ot + 0)

[93.6]
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Using this expression together with the second equation [93.3], one

has

Ze eu_ [g(a) - hl(a)j] [93.8]i aw9

Hence, to the first order, the non-linear element of the system can be re-

placed by the equivalent linear one so that the symbolic equation of the

quasi-linear system becomes

Z - Ze = 0 [93.9]

Written explicitly, this equation is

mp + [gl(a) - hl(a)j] [93.10]
p awo

where p = -6 + jw, 6 being the decrement and w the frequency of the equiva-

lent linear system. Substituting this value of p into Equation [93.10], one

has

(-6 + jW) 2 + Wo2 [gl(a) - h(a)j](- + jw) [93.11]m wo a

whence, to the first order, one obtains
6 -1 g(a); = wo hi(a) [93.12]

2mwoa 2mwoa

By substituting these values into the equations of the first approximation

da dq
dt - Sa and dt - odt dt

one obtains

da g (a); d P hi(a) [93.13]
dt 2mwo g1(a); dt 2mwoa

By the introduction of the total phase 0 = wot + 0, these equations become

da = g,(a); d ( # hi(a) = w(a) [93.14]
dt 2mw o  dt= 2mwoa

It is thus seen that the solution to the first approximation is still of the

form

x = a sin 0 [93.15]

where a and 0 are given by Equations [93.14].

By analogy with the definition of the linear decrement, it is logi-

cal to introduce now a quantity K, the equivalent decrement, defined by the

equation

S- g,(a) [93.16]
awo
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Since gl(a) is the first coefficient of the Fourier expansion, its explicit

value is
2r

g,(a) = ffo(a sin , awo cos ) cos dO [93.17]
o

whence

S- n fo(a sin, awocos 0) cos 0 do [93.18]
7 o 

o (

awor 0

Following the procedure explained in Section 75, one obtains
2y

ke = ra f fo(asin, awo cos 0) sin 0 do [93.19]
0o

and to the first order 2 
= k + k The equations of the first approximationm

then acquire the familiar form

da _ db | + k'
dt - 2ma; - = [93.20]dt 2m dt V m

If one differentiates the solution x = a sin b twice, takes into account Equa-
tions [93.20], and substitutes x and x into Equation [93.1], one finds that

the solution x = a sin b satisfies the linearized equation

mx + Ax + (k + k)x = 0 [93.21]

to within a factor of the order of A2.

It should be noted that in the equation of the first approximation

the dependence of the "forcing function" on time does not appear explicitly.

This is due to the fact that, for the formation of these equations, only the

term fo(x,i) of Expansion [93.2] has been retained. This term is expressed

by the equation

fo(x,X ) lim
00

In other words, the first approximation deals with the average value

of the forcing function with respect to time, and the instantaneous behavior

of that function is felt only in approximations of higher orders.

The rest of the discussion is centered about the linear equation

[93.21]. Thus, for example, the stationary state is reached when

2r

(a o) - fo(a sin0, awocos ) cos 0 do = 0 [93.22]

This corresponds to Equation [46.22] of the theory of Poincare or to the first p,
of the "abbreviated equations" [52.9] of the theory of Van der Pol.

The stationary state is stable if (aa- > 0 and unstable if
(~)aa < 0.

Self-excitation may develop from rest if X(0) < 0-, if, however,

X(0) > 0, no self-excitation takes place.
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94. FIRST-ORDER SOLUTION OF VAN DER POL'S EQUATION WITH FORCING TERM

It has been shown that the operation of a self-excited thermionic

generator with inductive coupling can be expressed by an equation of the Van

der Pol type, that is,

y + y - (1 - y2)y = o [94.1]

If an alternating electromotive force E = E0 sin at of constant frequency is

provided in the grid circuit shown in Figure 94.1, the differential equation

[94.1] acquires a "forcing term" and becomes

j + y - p(1 - y2)y = E0 sinat [94.2]

If we introduce a new variable z, defined by the equation y = x +

+ Usinat, where U= 1 Ea 2 , Equation [94.2] becomes

x + x = P[1 - (x + Usinat)2][j + Uacoset] [94.3]

In this equation

f(t,x,x)= [1 - (x + Usinat)2][j + Uacosat] [9.4]

Developing the right side of this

equation and collecting terms not IIIII

depending explicitly on t, one

has E

fo(x,) = 1- x2 U)' [94.5]

If we let m= 1 and k = 1 in Equa-

tion [93.1], then we can take as

generating solutions x = a sin q

and i = a cos q, since wo = 1.

Substituting these solutions into

[94.5] and carrying out the inte- Figure 94.1

gration indicated by [93.18], one

obtains

[94.6]
4 2

The equation of the first approximation therefore becomes

dt 2 \ 4 2 a [947]

This equation shows that for U2 < 2 there exists a trivial solution a = 0

which, however, is unstable. In fact, for a very small initial departure,

the quantity in parentheses is positive, which indicates that the amplitude

begins to increase. The stationary amplitude a, is reached when
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a = a1 = 2 - U- [94.8]

If U 2 > 2, there is no self-excitation, and the trivial solution a = 0 is ad

stable. The value

2 = Eo

(1 - a2)2 = 2

is thus a critical threshold separating two zones: in one zone, where U 2 < 2,

the system becomes self-excited; in the other, where U 2 > 2, the external

periodic excitation with frequency a prevents self-excitation.

95. IMPROVED FIRST APPROXIMATION FOR A NON-RESONANT
EXTERNAL EXCITATION OF A QUASI-LINEAR SYSTEM

Equation [93.6] gives the expression for a non-linear force in terms

of the Fourier coefficients for different combination harmonics.

Using the terminology of electric-circuit theory, one can say that,

if an electromotive force e = e0 sin (.Qt + 6) is impressed on a linear imped-

ance Z = mj+ -k-, the steady-state current due to this forcing term will be

eo sin (2t + 0) = e0 2 sin(Qt + ) e= 92 cos (t + 0)
=j2 + M( = cos(t + 2W)

mj9 + m(wo 0- 2

Likewise, for e = eo cos (.Qt + 4), the forced oscillation is

eo  - eoj2 eoDo Cos (St + ) = e cos(Qt + 0) e sin(Wt + 4)
mS + k m(Q 2 - Wo) m(9 2 

- o)
jS

One obtains the following equations for x by dividing Equation

[93.6] by the linear impedance of the system:

NI

x = a sin + + co s k - + hksink +
k m (1 - k 2 ) 

j02

N N' N N N'
S(gnlk - hn 2 ,k) cos (k - t) (gnl,k + hn2,k) cos (k + vnt)+U (m.1, k + Yn) 0 +2 - 2 +

2 m n=0k=O 2 - k(wo + n)2 2 mn=k=o - (kwo + 7,)

N N' (gn,k + h2,k) COs(k0 - ,nt )  
N N 2,k n, k) sin (k+ Yn)

+ (9n2 k + n1, k) sin (k
2m n=Ok=O o (k o 2mn=0k= o o (k wo + Yn

+ N (gn1,k - hn2,k) sin(k 0 - y't)
2m 2 )2 [95-1]
2m n=0k=0 - (kwo - n)

A similar expression can be written for x. From Expression [95.1]

it follows that resonance occurs whenever one of the divisors becomes either

zero or a small quantity of the first order. Under such circumstances the
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smallness of the numerator due to the factor p is offset by the smallness of

the denominator, so that the resulting term remains finite.

It can also be seen from Expression [95.1] that the dependent vari-

-- able x(t) consists of three kinds of oscillations, namely:

1. Free or autoperiodic oscillation, a sin 0 = a sin [w(a)t + €].

2. Forced or heteroperiodic oscillation with frequencies y, given by

the terms in which k = 0.

3. The spectrum of combination oscillations with frequencies kw(a) ±+ n.

One could proceed with building approximations of higher orders in

which the divisors would be of the.form W0
2 - (kwo + b1X1 + ... + bnXk)2 and

apply the preceding argument. However, the formation of these approximations

is complicated and adds nothing new to the qualitative aspects contained in

the improved first approximation [95.1].

In the following discussion, we prefer to use the terms "auto-

periodic" and "heteroperiodic" instead of "free" and "forced," for reasons

which will appear later.

96. HETEROPERIODIC AND AUTOPERIODIC STATES OF NON-LINEAR SYSTEMS;
ASYNCHRONOUS EXCITATION AND QUENCHING

We shall now consider Equation [95.1] when the autoperiodic oscilla-

tion is absent, that is, when a 0. In such a case

gk = h = 0; k = 1, 2, - -

gnl, k = 0; gn2,k = 0; hnl, k = 0; hn2,k = 0; k = 1, 2, " •

This follows from the fact that the numbers gk, ... for k > 0, which we have

just asserted to be zero, are merely the non-constant terms in the Fourier

expansions of [93.5]. Now for a = 0 all the expressions on the left side of

these equations reduce to their constant terms. This same fact is true of

their Fourier expansions, and hence all coefficients of the cosine and sine

terms in these expansions are zero.

If we put g,,,'o = An and hn2,0 = B n , Expression [95.1] reduces to

P N A cosy, t + B, siny, t 9
x B ( s1 + Yn2 + g(0,0) [96.1]

Hence, for a = 0, only heteroperiodic oscillations exist with externally ap-

plied frequencies Y1, 2," , N In Section 94 it was shown that for

2 =( Eo 2 > 2

the heteroperiodic state is the only one possible.

iir , igI l"ffiiI
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Consider the following differential equation encountered in

acoustics:

mj + XAY + ky + 61y 2 = E1 sinalt + E2 sin(a 2 t + 8) [96.2]

where m, AX, and k are positive constants. Moreover, XA and 6, are small, so

that we can introduce a small parameter p by writing

A, = /A; 6~ = p1 [96.3]

In order to make Equation [96.2] of the same form as [93.1], one can introduce

a new variable x defined by the equation

E1 sin a t E 2 sin(at + B)
y(2_ ) +. m(W2 - ) [96.4]

This change of the variable gives

mi + kx i i - XE AElacosaYt _ AE 2 2 Cos(a 2t + B)( I o m(2 M - 2)
0 1 0 2

6 [k E1 sin at t E 2 sin(C 2t + 8)'l [96.51
w -a ) m(wo - a2 J

Here X = pA > 0. Hence, by Equation [93.20], the autoperiodic oscillation

dies out and only the heteroperiodic state is possible. By Equation [96.1]

one obtains the following expression for the heteroperiodic oscillation:

pXXEa cosalt phE 2a2 cos(a 2 t + #) ldE 2

2(a 2 _ 12)2 m2((02 a )2 2k[m(, 2  [96.6]m2 0 1 0 2 2 2 2k[mO -222  2

E22 E2 cos2at + pE22 cos 2(aLt + ) +

2k[m(C. - a2)]2  2m[m(w2 - 1
2 )] 2 2 - 4a2 2 [( _ 2 2 0)2( - 4a2)

+ 1p6E 1E 2cs [(0 2 - 1 )t + 9] + a6E1 E 2 cos[(a 2 + a 1)t + 18
m O - a2)(Cw2 - .1)[(,. -(a2- a1)2] %3 2 _ C12)((02 _ U2)[W() - (a2 + a1)2]2 2 2 2 03 2 C20 12 0 2 02- (C12 + 1 2

It is seen that the heteroperiodic oscillation consists of harmonics

of the fundamental frequencies a1 and a2 and also of the combination frequen-

cies 2a1 , 20 2, a 1 + a 2 , and a1 - a 2. The frequency zero (the third and the

fourth terms) also appears in the spectrum.

As another, more complicated example in which both heteroperiodic

and autoperiodic oscillations appear, we shall consider an electron-tube

oscillator acted upon by an extraneous voltage of frequency a in addition to

the feed-back voltage e. The anode current is

i, = f(E o + Fcosat + e) [96.7]



Let the frequency of the oscillating circuit be wo. In the first approxima-

tion, the preceding expression becomes

Si = f[Eo + Fcosat + acos(w 0ot + 0 [96.8]

where a and o are the amplitude and phase of the autoperiodic oscillation of

the voltage applied to the grid.

In order to apply the method of equivalent linearization, the non-

linear conductor ia = f(eg) must be replaced by a linear one ia = Seg, where

the equivalent parameter S must be so chosen that the fundamental harmonic of

[96.8] is equal to the harmonic Sa cos (wot + 0). By the Principle of Har-

monic Balance, Section 77,

-S =2 f (Eo + Fcos r + a2 cos 2 ) cos r2 drldT2  [96.9]
oo

It was shown in Chapter XIII that in the linearized scheme in which the non-

linear conductor is replaced by an equivalent linear one,

jW - 6 = Wo - 6o(i - ) [96.10]

where w0o is the frequency and do is the decrement of the linear circuit closed

on the non-linear conductor linearized by the transconductance S. The quan-

tity S, is the critical transconductance, that is, a particular value of the

transconductance S for which the decrement 6 vanishes and the oscillation be-

comes stationary.

It is apparent that, if the external excitation Fcos at is absent,

the value of S is somewhat different from its value in Equation [96.93. In

fact, for an autoperiodic excitation the equivalent transconductance is given

by Equation [83.7], viz.,

1 27

S(a) = f (Eo + a cos o) cos d

In order to use this equation, it is sufficient to replace E o by E o + F cos at

and to average it again over the period 2r. If the autoperiodic frequency ,o

is high (for example, radio frequency) and the heteroperiodic frequency a is

low (for example, audio frequency), the equivalent transconductance S(a) giv-

*" en by Equation [83.7] is a slowly varying function with frequency a. If the

s" value of S(a) oscillates with frequency a in the neighborhood of the critical

value of self-excitation (autoperiodic frequency) and the amplitude F of the

heteroperiodic frequency is sufficiently large to pass out of the zone of

self-excitation, it is apparent that the appearance and disappearance of the
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autoperiodic state will also be periodic with the period TH = of the heter-

operiodic oscillation. The reader will recognize the characteristic behavior

of the so-called superregenerative circuit.

If, however, the heteroperiodic frequency is considerably higher

than the autoperiodic one, its effect will be felt in the virtual modification

of the critical transconductance of the electron tube: Depending on the form
of the characteristic, this effect will sometimes manifest itself in the ap-
pearance of an autoperiodic self-excitation and sometimes in the extinction of
an existing autoperiodic oscillation. These phenomena are sometimes referred
to as asynchronous excitation or asynchronous quenching of an autoperiodic os-
cillation by a heteroperiodic one (5). The conditions for such asynchronous
action are easily established by following the procedure indicated by Equation
[96.9] in which one integration, say d-r, is carried out with respect to the
heteroperiodic period and the other d-r2 with respect to the autoperiodic one.

As an example (5), consider an electron-tube oscillator with a non-
linear characteristic given by the polynomial

i = f(x) = ax + #X + 3 + 6X4 + Ex5  [96.11]

It has been shown that this expression approximates sufficiently
well both the soft and the hard characteristics. For a soft characteristic,
it is sufficient to put 6 = E = 0, whereas for a hard one, the full polyno-
mial should be used. Assume that the grid voltage x is of the form

x = acos + bcosb [96.12]

where a and 0 are the autoperiodic variables and b and i the heteroperiodic
ones. Replacing x in Expression [96.11] by its value [96.12] and carrying
out the integrations indicated by [96.9], viz.,

2r 2w

S(a, b) = 2  f (acos¢ + bcoso) cos# dodo [96.13]
0 0

one obtains the following expression

S(a,b) = a + ya 2 + yb +. a4 + 15 a 2b2 + eb4  [96.14]4 2 8 4 8

If the heteroperiodic excitation is absent, that is, if b = 0,

S(a,) = a + ya2 + 4  [9615

which is the expression for the transconductance S of an autoperiodic state.

More specifically, if the characteristic is soft, that is, if y < 0 and
6 = E = 0, the stationary condition is

S(ao,O) = a - yla2 = 0 (96.16]
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which gives

a ,, [96.17]

which was obtained previously by the method of Poincar6, see Section 54.*

The condition for soft self-excitation in the absence of a hetero-

periodic frequency is

S(0,0) = a > S(a,O) [96.18]

If, however, the heteroperiodic frequency is present, that is, b * 0, the

initial value of the transconductance is

S(O,b) = a+ -yb2 [96.19]
2

Since Y < 0, S(O,b) < S(0,0), which means that the presence of the hetero-

periodic frequency may prevent the occurrence of self-excitation. Therefore

one concludes that, for a normally soft characteristic, asynchronous, quench-

ing of the autoperiodic frequency by the heteroperiodic one occurs, a fact

which was mentioned at the end of Section 94.

For a hard characteristic (c < 0 and a, 8, y, and 6 > 0) in the

absence of the heteroperiodic excitation, the transconductance is

S(a,0) = a + 3,ya - 5IEIa [96.20]

This expression considered as a function of a2 is a maximum when

2 3'a --
51el

The maximum value of S(a,O) is then

Smax(a,0) = a ± [96.21]

One can obtain asynchronous self-excitation (b * 0) if

S(0,0) - Smax(a,0) = 3b2 + 15 b + 9 2 > 0 [96.22]
2 8 40 e

that is, if

2 15 9 ,2
3 b2 > 15 lb + - [96.23]2 8 40 IEJ

This inequality can be fulfilled if the quantity b2 lies in the interval

1 y < b2 3 y [96.24 ]
5 El 5 jel

* It should be observed that the notation here differs from that of Section 54.
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The subject of asynchronous action on a self-excited system can be

summarized as follows:

a. If the characteristic is soft, the heteroperiodic frequency

may result only in quenching the autoperiodic oscillation and not in

causing its appearance.

b. If the characteristic is hard, the heteroperiodic frequency

may cause self-excitation of the autoperiodic oscillation provided

the amplitude of tne heteroperiodic frequency lies in the interval

indicated by the inequalities [96.24].

c. In all cases, the heteroperiodic action manifests itself in

a virtual modification of the transconductance by which the condi-

tions of self-excitation are influenced one way or the other accord-

ing to the form of the non-linear characteristic.



CHAPTER XVI

NON-LINEAR EXTERNAL RESONANCE

97. EQUATIONS OF THE FIRST APPROXIMATION FOR AN
EXTERNALLY EXCITED RESONANT SYSTEM

We shall now investigate the conditions under which certain har-

monics in the combination-frequency spectrum become large compared to others

when a quasi-linear dynamical system is excited by an external heteroperiodic

frequency. We shall call this external resonance in contrast to internal res-

onance, which characterized a similar system without an external excitation.

For simplicity, we confine our attention to systems having one de-

gree of freedom and fractional-order resonance. In such systems

o r a [97.1]

where r and s are relatively prime. Unless otherwise stated we also assume

that 8 > 1, because s = 1 corresponds essentially to ordinary resonance. In

the "neighborhood" of resonance

S= y + /Q [97.2]

where p is small.

Let us consider an electron-tube oscillator whose non-linear ele-

ment, the electron tube, has a characteristic ia = f(e). Let the autoperiodic

oscillation be

e = acos (wot + 0) = acos Oat + q)

The anode current ia is given in terms of the grid voltage by the expression

i = f [E0 + F cos at + acos(rat + 41 [97 .3

In this expression the quantity a is the amplitude of the autoperiodic oscil-

lation, !a is its frequency, and F and a are the corresponding quantities for

the heteroperiodic oscillation introduced in the grid circuit, for instance,

through an inductive coupling.

We begin by linearizing the non-linear element of the system by

writing

ia = Se [97.4]

where S is the equivalent transconductance, a function of the amplitude a of

the autoperiodic oscillation. For simplicity we will write S instead of S(a).

It is recalled, see Section 77, that, according to the Principle of

Harmonic Balance, the fundamental harmonic of the non-linear periodic quantity



[97.3] is equal to the linearized oscillation 197.4). By a Fourier series we

obtain the following expression for this harmonic:

o-tfa f [E + Fcos e- + a cos ir + ][ cos c- + ) cos (at + +
0

+ sin( - + 0) sin( t + dr [97.51

This expression can be written in the form

S,ra cos (r Ct + ) - a sin (at + ) [97.6]

where
2r

Sr = Sr(a,) = i f [Eo + F cos sr - + a cosrr cosr-d-r
0

[97.71

Si = Si ( a , ) - 1 ff E o + Fcos (s -s + acosr sinrr d-

Equation [97.6] can be written as

Sa cos (at + ) = (Sr + jSi) acos(s at + ) [97.8]

It is seen that in a resonant system the transconductance S is a complex quan-
tity

S = S, + jSi [97.9]
whereas in a non-resonant system it is real. Moreover, the formal procedure

remains the same as in Section 89, the only difference being that instead of
impedances we are now dealing with admittances since transconductance is an
admittance. Using Equation [96.10] for the fundamental harmonic [97.8] and

separating the real and the imaginary parts, one gets

= +o + OSo = o 1 S) [97.10]

where So, as before, designates the critical value of the transconductance S.

If we put rat + 0 = 0, the equations of the first approximation become

da S, do r S,
d t d t - +

The variables in these equations cannot be separated since both S, and S, are
now functions of a and 6. On the other hand, since these equations are of the
type investigated by Poincar6, we can assert that in the (a,o)-plane the only

stationary motions are either positions of equilibrium, that is, singular

points of the system [97.11], or stationary motions of the limit-cycle type.
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The first case is characterized by the approach of a and 0 to cer-

tain fixed values ao and 00 when t -). Thus we have

Sr (ao, 0o) r Si (ao, 0o) r
1 - So(a ao = 0; W - - a + o So - - a = 0 [97.12]

The oscillation ultimately reaches a frequency w which is exactly equal to a;

this means that the frequencies w and a become "locked" in a certain rational

relation. We may call this synchronization of the autoperiodic oscillation

with the heteroperiodic one. Thus there exists one single frequency, and the

stationary oscillation is

aocos(wt + -)= aocos (-at + )

In the second case both a(t) and 0(t) are periodic and have the same

period as the autoperiodic solution so that the ultimate oscillation consists

of the two frequencies. In other words, there are "beats" of autoperiodic and

heteroperiodic frequencies. We shall consider this subject in greater detail

in Chapter XVIII.

It is possible to show* that, when r -oo and s -3 c, Si ) 0 and Sr

approaches the value given by Equation [96.9], so that for large values of r

and 8 the resonant case degenerates into the non-resonant one, which has al-

ready been investigated. Hence, the typical features of fractional-order

resonance appear when r and 8 are relatively small integers.

Let us consider the following example. We assume that the function

f(E o + u) can be approximated by a polynomial of the third degree:

f(E o + u) = f(E o) + Su + S 2 u 2 - S3u
3  [97.13]

where S,, S2 , and S. are positive. Assume further that r = 1 and 8 = 2, which

gives w o = a/2. Placing u = Fcosat + a cos (rat+ 0) in [97.13], we obtain

S r = S, ++ SF+ 2  S2 Fcos2 -3 S3 2; Si =- S Fsin 2 [97.14]

Equations [97.11] become

da 6o (S 3 F 2 +1 S2Fos )a 3 S3 a3

dt - S S1 2 + S2 F cos 2) a - so
dt S2 2 4 So

[97-151
dq a o6S2 F

d = wo sin 2
dt 2 2So

The second equation [97.15] admits separation of variables and can be inte-

grated. Putting

* The proof of this proposition can be found in the Kryloff-Bogoliuboff text "Introduction to Non-
Linear Mechanics," Reference (1), pages 270 and 271.
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Sand 6S 2 F
As = 0o - - and 2So

one has two cases: Case 1, Aw< X and Case 2, Aw >X.

In Case 1 it is apparent that 0(t)t- 00, where o is given by
the expression

= sin-'( 2SoAw [97.16]
6 S2F )

One can select for 200 the principal determination, that is, sin 200 > 0;

cos 200 > 0. Let us consider the asymptotic behavior of the solution of the

first equation [97.15] as - ~0. If, for brevity, we put

S - so - S 3 F 2 + 1S 2FOs2o) = A; S3 = B
so 2 2 4 So

the first equation [97.15] is

d --= Aa - Ba 3  [97.17

When A < 0, and since a is always positive, the derivative da/dt is always
negative and hence a cannot tend to any limit other than zero. Thus a = 0 is

the only stable stationary amplitude. If, however, A > 0, one finds that the

point a = 0 is unstable. The stationary autoperiodic oscillation, which can

be shown to be stable, see Section 65, is then

a = a o = S- S o - - S 3 F + S 2 Fcos 2 0 ) [97.18]

Since 9 -o o when t . oo, we conclude that there will be a synchronous auto-
periodic oscillation.

In Case 2, when Aw >A, the second equation [97.15] gives

o dosin2 = dt [97.19 s
Ac - AXsin2 A4(1 X sin2 A w A 97-19

Integrating this expression, one obtains

- 0 2 cos 2 = Awt

that is,

S= Awt + 0o + cos 2
2Ac

where o is an arbitrary constant. In view of the smallness of X this can be 0,

written as

= (Awt + o) 2 cos2(Awt + €o) [97.20]

Substituting this value of € into the first equation [97.15], one obtains a

differential equation with periodic coefficients.



It is noted that this equation admits a trivial solution a = 0,

which expresses the condition of a heteroperiodic state. The stability of

this solution depends on the sign of the expression

S1 - So - SF2 + S 2 F cos 2

where cos 20 is the average of cos 20 per period, that is,

cos24 = -1 cos 20 dt [97.21]
0

T 2 x 2r

cos 2 dt= cos2 dO - d(20)f o dO 2 f Aw - X sin 20

S 2 . U=0
1 2d( - k sin ) k1U_ d(-k slog1(1 - ku) = 0

2Ak 2 o 1- k2 sin0 2Awk 2  u= 0

thus cos 20 = 0, and the preceding expression becomes

S, - So - S =F2 C [97.22]

If C < 0, the first equation [97.13] shows that the heteroperiodic

state a = 0 is stable; if, however, C > 0, the heteroperiodic state is un-

stable and autoperiodic excitation sets in.

98. FRACTIONAL-ORDER RESONANCE

We shall consider Equations [97.11] again in the more general case

of fractional-order resonance. It was shown that a trivial solution a = 0

exists which characterizes the heteroperiodic state. We will now investigate

the stability of the solution a = 0; for that purpose we develop the inte-

grands appearing in the functions S, and Si in terms of the small quantity a,

around the point E0 + F cos (sT - A) in Equations [97.7]. This gives the

first terms of Taylor's expansion for these functions, namely:

2w

S, La Eo + F coss7 s- -) cos2r7~ d0r

[98.1]

S, 2 f 4Eo + F cos sr r - sin 2r- dr

With 7 = t + -, these expressions reduce tor
2m

S, r ff[Eo + F cosst][1 + cos(2rt + 20)]dt

]s)d

Si = -ff [Eo + F cos st] sin(2rt + 20) dt
Si = 2rr0



because of the periodicity of the integrands. Since

f f(Eo + Fcosst) sin2rt dt = 0
0

these relations reduce to

Sr = r fa [E o + Fcosst][1 + cos2rt cos 2] dt
0

S, = - fi [EO + Fcos s] cos 2rt sin 2 dt

If we set

27r fa[Eo + Fcosst]dt = No

and [98.2]

Sf fa[Eo + Fcosst]cos 2rt dt N

Equations [98.1] become

S, = N o + Ncos2 €

S i = - N1 sin2€ [98.3]
With these values for Sr and Si, Equations [97.11] become

da =o 0 1)a + 6SN acos 2

[98.4]
4d = (o- r a) ON1 sin 2,
dt s So

The nature of the solutions of these equations establishes the conditions for

the stability or instability of the autoperiodic oscillation. If the only
stable autoperiodic solution is a = 0, only heteroperiodic oscillations are

possible. Equations [98.4] with periodic coefficients can be reduced to a
system with constant coefficients by introducing the new variables u = a cos 0
and v = a sin q. With these new variables we have

du da dq dv da dqcduos 0 - a sin 0 and dv da sin + a cost d
dt dt dt dt dt dt

Substituting in these equations and from Equations [98.4] and rearrang-

ing, one gets

dt 6 0o So N - 1)u - - ra) v = Au - By

[98.51
dv o - -cu + 6 (No - N - 1)v = Bu + Cv
dt so SO
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These equations have non-trivial solutions if

(-p+ A) - B [98.6]

B (- p + C)

Hence the solution a = 0 is stable if the roots p, and p, of [98.6] have nega-

tive real parts. Written expliqitly, these roots are

P1, 2 = o(Q - 1)+ /(6~2 - - a [98.71

According to whether the quantity under the radical is positive or

negative, the roots will be real or conjugate complex. Replacing N, by its

value [98.2] gives

o- > fa(Eo + Fcossr) cos2r-r dr [98.8]

r < 6 20

o-- a < fa(Eo + Fcoss-r) cos2rr dr [98.9

In Equation [98.8], the roots are conjugate complex, and self-excitation is

possible if N o > S o , that is, if

f27fa(E + Fcosr) dr > So  [98.10]

In Equation [98.9], the roots are real, and self-excitation is possible when

at least one root is positive. One finds that this condition is

(N o - So)2 + N1
2 > o a So2 [98.11]

with N o > So .

If one takes a still stronger inequality by dropping the term

(No - So)2 in [98.11], one obtains a sufficient condition for self-excitation:

(o - o ) < a < A(o + o ) [98.12]

This means that the autoperiodic state always sets in when the external fre-

quency a lies in the interval defined by [98.12], which requires that

N = 2  fa(Eo + F cos sr) cos2rr-dr * 0 [98.13]

This condition is fulfilled only when 2r/8 = k, where k is an integer. Since
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systems where r/s is an integer have been eliminated because they do not pos-

sess subharmonic solutions, one can assert that the condition for the exist-

ence of self-excitation of the autoperiodic state excited by the extraneous

frequency a is

r 2q + 1s = 2 [98.14]s 2
where q = 0, 1, 2,

If the amplitude F of the externally applied force is very- small,

one can further simplify the expression [98.13] and write

Ffa F( E o ) 2)r

N21 = 2f cossrcos2rrdr [98.151

where far(Eo) designates the derivative of fa with respect to F taken at the

point E 0. From this expression it follows that

N = 0 for s # 2r

[98.16]

N = FfF(E) for s = 2r
2

which means that in the zone of self-excitation defined by [98.12] only funda-

mental fractional resonance of the order one-half can exist, in which case

r 1 a
s 2' 0 -= [98.17]

This fact was noted by Lord Rayleigh in his experiments with oscillating sys-

tems. He observed that, if one of the parameters (L,m) or (1/C,k), in the

notation of Chapter XIII, oscillates with a frequency twice as large as the

frequency of the system, the system will oscillate with half the frequency of

the parameter.

99. PARAMETRIC EXCITATION

Parametric excitation of a system is defined as the condition of

self-excitation caused by a periodic variation of a parameter of the system.

Although this subject is discussed in Chapter XIX from a different point of

view, it is preferable to give an outline of the phenomenon here in order not

to interrupt the argument of Kryloff and Bogoliuboff which we are following.

Let us consider the circuit shown in Figure 99.1. It consists of

a very small resistance R, a constant inductance L, a non-linear inductance

L 1(i) containing a saturated iron core, and a variable capacitor C arranged

to produce a fluctuating capacity with frequency a around its average value

C o according to the law

C = Co(1 + psinat)



where pCo is the amplitude of the fluctuating

capacity and p << 1. If we assume that R is c

very small and that L1(i) << L, the problem

is clearly within the scope of the quasi- L L,(1)

linear theory. Let us also assume that the

circuit is tuned so that
R

1 a [99.1]
9 91- y-o 2

0 Figure 99.1
This condition will result in fractional-

order resonance of the order one-half, as was just shown, and the steady-state

current will be of the form

i = a sin (Ct +) [99.2]

In this problem we have, in addition to the constant parameters R and L, one

periodically varying parameter C = Co(1 + p sin at) and one non-linear param-

eter L1(i). We can apply the Principle of Equivalent Linearization to the

non-linear parameter L1 and write

2;

L,(a) = 1 fL'(asnsi) sind [99.3]

It is recalled that the coefficient of

inductance L is defined in all cases by

the relation 0 = Li, where € is the

flux linkages of the coil carrying the

current i. When the coil is wound on

an iron core, the function 0(i) has the

o appearance shown in Figure 99.2, when

Figure 99.2 we neglect the effect of hysteresis and

the inflection point near the origin in order to simplify the argument. It is

apparent from the above definition that the coefficient of inductance L is a

monotonically decreasing function of i in the presence of magnetic saturation.

Approximating the function 0(i) by the expression 0(i) = 0o(1 - e- ), one has

the following expression for L(i):

2 3

L(i) = 0 -X .24]

It is seen from this expression that

dL(i) _ 0( 2  3

di 2 3

is negative. The argument is obviously valid for any point around which the

expansion is made. It is also apparent that the term 0,X = L0 represents the
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constant coefficient of inductance of the coil without an iron core; the re-
X2 i X3i 2

maining terms 2 0- 6--; ... are variable terms resulting from the non-

linearity of the function 0(i). The variable parameter C = Co(1 + p sin at)

accounts for the electromotive force

1 1t

= 1 fidt =- 1 asinl-t + dCo(1 + psinat) o Co (1 + psinat) asin (20 0

a cos (at +

[a 99.51
Co2 (1 + psinat)

By the Principle of Harmonic Balance, Section 77, the fundamental harmonic of

this expression must be equal to the voltage drop of the current i, given by

[99.2], across the impedance Ze = re + jxe, where Ze is the equivalent imped-

ance of the circuit.

Since the Fourier coefficients of the first harmonic a1 cos (Mt + 0)
+ b, sin (- t + €) of the periodic function [99.4] are

1 " acos(8 + ) 1 " a cos (O + )
al = C a cos(9 + 0)dO; bi = a sin(0 + 0)dO

0 Co -(1 + psin20) 0 Co-(1 + psin20)
2 0 2

one finds, after a few elementary transformations, the following values for re
and xe:

1 2
s in ( 9  + ) cos (0 + )dO P

re = a Co (1 + psin29) a Co

[99.6]
X 1 2r Cos2(0 + d) 2 [11
e 2 - Co (1 + p sin20) aC 1 2

It is thus seen that a variable capacity results in the appearance of a vari-

able impedance Z, characterized by components re and xe given by [99.6]. The

circuit acts as if it had an equivalent capacity

CeO -sin2- P sin 2) [99.7]
1 + 2 sin20 2

We have seen that the equivalent system consists of an inductance L + L 1, a

resistance R - P cos 2q, and a capacity Co(i + sin 20). The equivalentaCO 2
parameters thus appear as functions of the phase angle 0. The decrement and

frequency of the equivalent system are

,1 " il li lul ii l ,II I INllllilil Ill 0,i'll, , -
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R - cos 2 R
ciC R pw,So cos 2

2(L + L) 2L 4

[99.8]
1 Ll(a) p

2 + -E sin 2,0= (L + Lj)C w 2L 4-sin2

whence the equations of the first approximation are

da WoP cos2 - R do ( L(a) c) woP [
dt 4 ca2L ' dt o 2L o 2 4 sin4 2 99.9

Li(a)Expanding the function -21- o , which appears in the second equation, in a

Taylor's series around the value a = 0, we get

dO / LI(0) 0P sin p a L'(0) .
dt ('o 2L -o -2 4 2L

If we let
WoP R L(0) a

4 ; 2L n; 2L o 2

Equations [99.9] become

da = (m cos 2€ - n) a; d p + m sin2 - Li(0 )  [99.10]
dt dt 2L 1

Let us examine the behavior of the system when a = 0. The singular

points occur when

m sin 2g + p = 0 [99.11]

Let 2 o0 be one of the roots, which we will assume to be in the first quadrant

(sin 2 00 > 0; cos 2 00 > 0). Applying the Poincar6-Liapounoff criteria of sta-

bility and designating the small perturbation of the amplitude by e and the

perturbation in the phase angle around 00 by n, we have the following varia-

tional equations

dt = (mcos240 - n)

[99.12]
d -( L(0)) + (2mcos 20 ) 7 - 2m cos 20 " o

The last constant term in the second equation clearly does not have any effect

on stability and amounts to a shift of the origin in the ( ,n)-plane. The

characteristic equation of the system [99.12] is then

S2 - (3m cos2 o - n)S + 2mcos 2 0o(mcos 200 - n) = 0 [99.13]

For self-excitation it is necessary that the free term as well as the coeffi-

cient of S be positive. In this case the singularity is either an unstable

nodal point or an unstable focal point. Since we have assumed that 2 o is



in the first quadrant, these conditions require that

cos2 0 > -
m

[99.14]

cos2 0 > n
3m

The first inequality is stronger than the second and should be used. On the
other hand, for real values of the argument, one must have

n 2R
- < 1 [99.15]m Lo p

This merely imposes the additional condition that the index of modulation p
should be.below a certain critical value given by [99.15]. From the first
inequality [99.14] and the condition [99.11] we have

p2 = m2 sin 2 2 ° = m 2(1 - cos2 25 0)
that is,

m2cos22€o = m2 _ p2
whence

p2 + n2 < m
2

Substituting the values of m, n, and p, we obtain the condition of self-
excitation which was derived by Kryloff and Bogoliuboff:

( L1(0) )2< 2 [99.16L o 4 o [99.16

Self-excitation does not occur if the sign of this inequality is
reversed. The stationary condition is obtained when da/dt = dq/dt = 0 in
Equations [99.9]. If we designate the stationary amplitude by a, and the
phase angle by ,1, we get

2R
cos 2, = 2R

From the second equation [99.9] we have

L(a) = L(2 - + P sin20i) [99.17]

This equation gives the amplitude a, of the stationary oscillation since 2q,
is known and since the function L1(a) is given by Equation [99.3].

For the stability of a stationary state one can again apply the
Poincar6-Liapounoff criteria, see Chapter III, to the differential equations
[99.9] by expanding the functions cop 20, sin 2q, and L1 (a) in a Taylor series
around fixed values €5 and a, and by introducing the perturbation variables (
and n given by equations 0 = 01 + e and a = a, + 7. Proceeding in this man-
ner, one obtains the following variational equations:
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dt
(99.18]

dt= [-qL(al)] + (2mcos2¢ 1 )

where

Cp R W0m oP n- q =
4 ' 2L 2L,

It is to be noted that L,'(a 1 ) is negative, since the non-linear inductance

decreases when a, increases. The characteristic equation of the system

[99.13] is

X2 - (3mcos201 - n)X + [(mcos2¢ 1 - n)2mcos2¢1 + 2mSsin20] = 0

where S = a1qjL 1'(a1 ) > 0. Conditions for a stable stationary solution are

clearly

3mcos 2 1 - n < 0 and m cos 2 2, - ncos 2, + Ssin 2 1 > 0 [99.19]

From the first condition cos 24, < -n- From the second
3m

cos 2, (m cos 20, - n) > - S sin 20 1

If the angle 2¢5 is in the first quadrant (sin 2q, > 0; cos 20, > 0), the pre-

ceding inequality can be replaced by a stronger one

cos20(mcos2 1 - n) > 0 [99.20]

whence
n

cos20 1 >

Comparing this with the previous one, namely, cos 2¢, < , we see that these

two conditions are not consistent. This means that a stable stationary solu-

tion cannot exist when 20, is in the interval 0 < 2, < .

If one now considers the interval-~ < 20 1< r, that is, cos 20, < 0,

sin 20, > 0, it is observed that both conditions, namely, 3m cos 20, - n < 0

and m cos 20, - n < 0, are fulfilled. The argument can easily be carried out

for the remaining two quadrants. This means that stable stationary solutions

may exist for certain definite ranges of the phase angle.

100. STABILITY OF NON-LINEAR EXTERNAL RESONANCE; JUMPS

We shall now investigate the so-called jump phenomenon observed in

non-linear systems acted upon by an external periodic excitation. We will

consider the usual quasi-linear equation

mi + kx = pf(at,x,,) [100.1]

where f(ctt,x,x) is a non-linear periodic function of t with period 2. In

the neighborhood of external resonance we have the relation
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(o = --a + uQ [100.2]

where wo = ,is the undamped frequency and r and s are relatively prime inte-

gers. The term pQ is a small quantity of the first order. The mechanical

interpretation of Equation [100.1] is obvious. We can apply the method of

equivalent linearization, Chapter XII, and for this purpose we seek a solu-

tion of the form

x = asin -at + [100.3]

According to this method, the non-linear exciting force

F = pf(a t,x,) [100.4]

is to be replaced by the equivalent linear one

F = - kx - 1  [100.5]

The equivalent parameters k1 and X1 are obtained by equating the fundamental

harmonic of the expression

F = pf(at,x,i) = f[at, asin( at + g), a-a cos(,at + 0 [100.6]

to the linearized terms

F = - klx - X = - ka sin ra t + - Xla raCos( at + [100.7]

The equivalent parameters k, and X, are given by the Fourier coefficients of

the first harmonic, namely,

21

k1  - s---, a sinrr, ara cos rr) sin rr dr
a o  r s

[100.8]
2;r

S- P sf - s - , a sinr-r, a r-a cos rr) cosrrdr
ra ra o r s

In view of Equation [100.2] these equations can be written as

27

k = - sr - s , asinrr awocosr) sinrrdr
,rao  r

[100.9]
27r

s - I ff - - , a sin rr, awo cos rr) cos rr dr
nwoa o f r

The parameters of the equivalent linearized system are

W -k ± = w( 1 + ') [100.10]
2m m +2

'~'*n*~6PJII~~~I~91~~Y*t; *-Fa*raKII
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and the equations of the first approximation appear in the form

da _ _ d_ r r k1dt -- a; d - -w-aO = W  -- a + WO [100.11]
dt 2m dt s S 2k

Replacing in these equations k, and X, by their values in [100.9], one obtains

two differential equations of the first order sufficient to determine the two

quantities a and 0.

As an example of the application of these results, we will consider

a rod of length I on which is impressed an axial periodic force F = H sin at.

The partial differential equation for the transverse vibrations of

the rod is

o4Y 'A 92y a2
EI + + Hsin at = 0 [100.12]

OX, g at 8x

where y is the lateral deflection,

EI is the rigidity of the rod,

7 is the weight of the rod per unit volume,

A is the cross-sectional area of the rod, and

g is the force of gravity, 32.2 feet per second squared.

Assuming as boundary conditions

y(O) = y() = yx(O) = yx( 1) = 0 [100.13]

and seeking a solution of the form

y = (t)sinnx [100.14]

one finds, upon the substitution of [100.14] into [100.12], the following dif-

ferential equation

yA + El 1 - H sin t z= 0 [100.151

g E- nr

If we let

2
2 EIr4g EI H

yo A14 ; cr 12 F,

where w0o is the fundamental frequency of the transverse oscillation of the

rod and For is the critical Euler's load, Equation [100.15] becomes

z + wo(1 - p sinat)z = 0 [100.16]

We are looking for a subharmonic oscillation of the order one-half, when

wo -z /2. The solution is then of the form

z = asin ( t + )

I i .111oliI I .IIII ll I, 11 u I

[100.17]
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where a and 0 satisfy the equations of the first approximation, viz.,

da 1dt 1 -paw cos 20
dt 4

[100.18]
dq - a 1
dt WO - 2 4 pwo sin 2¢

Comparing these equations with Equations [99.9] of the circuit excited by a

periodically varying capacity, we note that they appear as a particular case

of the latter, namely, the case when L(a) = 0 and R = 0. We can therefore

use the condition of self-excitation [99.16], which gives here

2 [100.19]
W0 2

Let us now consider fundamental non-linear resonance, that is,

r = s. The non-linear function appearing in Equation [100.1] is of the form

pf(at,x, ) = - f(x,i) + E sincat [100.20]

We have wo _= o. The quasi-linear equation then becomes

mx + kx + f(x,x) = Esinctt [100.21]

We are seeking a solution of the form

x = a sin(ct + €) [100.22]

The linearized equations of the first approximation are

da _

dt 2m
[100.23]

dt m

where the equivalent parameters X, and k, are given by the equations

2r

1 1 f[f(a sinr, awo cos -) - Esin(r - c)]cosr dr
rawo 0

[100.24]
2r

k, = 1 f[f(a sin-r, awo cosr)- Esin(r - )sinrdr
o

If we put

2x

Xe 1 f'(a sin, ao cos 7) cos 7- d

[100.251
2r

k e =k + 71 f(a sinr, a ocos7) sin7 dr
0

..a*e*'Bs;.:i~aWra;.r&ries*A+i~~R~n*~k*~ ' iu-?i; mi*.l*jrWl~~+ri~~pyR g~gagi*rt~.Ln.r~ri 1 O .i;*I
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it is noted that the coefficients ke(a) and ke(a) correspond to the absence

of the external periodic excitation Esin at. In view of Equations [100.24]

we can write

XE ine E 0 E E
1 = E sin e E sin = 6e + E sin [100.26]

2m 2m 2mawo  2m 2maa 2mac

where 6 e 2"

Similarly,

k + k 1 k + k1 _ 2 E Cos
m 2a m 2a m ma

- 1 2 - 2 E cos4) [100.27]
2ot e ma

where we = V%7m. The quantities de and we are the equivalent parameters for

the non-linear oscillations of the system in the absence of an external peri-

odic force.
lk + k in Equations [100.231,Substituting these values of X, and in Equations [1002]

one obtains the following expressions of the first approximation:

da Eda - -e a - sin 
dt 2mau

[100.28]
d2 2 2 E

2a = We - a - - cs
dt e ma

The stationary amplitude a is obtained from these equations:

- Esino = 2maa6e
[100.29]

Ecos = ma(we - a 2)
whence

a= E [100.30]
mV/(w - a'2 )2 + 4 a

It is observed that the stationary amplitude is given to the first

order of approximation by exactly the same relation which gives the forced

amplitude of a linear system, except that the equivalent parameters are to

be used instead of the constant linear parameters.

Although these results, which were derived from the equations of

the first approximation at a glance, do not seem to yield anything new, it

will be shown now that the important difference between linear resonance and

non-linear resonance lies in the conditions of stability. More specifically,

it will be shown that, whereas the linear oscillation is stable throughout

the whole neighborhood around the point of resonance, the non-linear oscilla-

tion is stable only in certain regions.

Silih Iiji Ukifi 'll 1 il ll I iiii llll.M0IIII I u



If we set

R(a,) = - - sine - 2aadem
[100.31]

0(a, 0) = (e2 f2 )a - cos
m

Equations [100.28] become

da
2a = R(a, 0)

dt
[100.32]

2aa- = 0(a, )
dt

The stationary state is given by the equations

R(a,;) = 0; (a,O) = 0 [100.33]

In order to investigate the stability of the stationary state we must form

variational equations. If we designate the perturbations in a and 0 by da

and 60, respectively, the variational equations are

dda
2a dt = Ra6a + R,

dtd2a d--t = 'a"a + 00~6

The characteristic equation, see Chapter III, of the system [100.34] is

aS 2 - (aRa + 0)S + (Ra V - Rb a) = 0 [100.351

The conditions for stability are clearly

aRa + 0 < 0; Ra 0 - Ro Oa > 0 [100.36]

Using Equations [100.29] and [100.31], one has

c8(a ,) -2a = (a2) 103
aRa + , = - 22ac a e - 2 ae [100.37]

On the other hand, we have

2 2x

2aa 2 6e Xe ac f (a sinr awo cos-r) cosrdr [100.38]m mw o 7r

Let us consider the quantity

27

W(a) = awo f(a sinr, awo cosr) cost dr
0

27
- offasin(,ot + ), aw0 cos(wot + )]awocos(wot + 0)dt [100.39]

27r0
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It is apparent from this expression that the quantity W(a) represents the av-

erage power dissipated by the non-linear force f(x,x) during the oscillation

x = a sin (wot + 0). Hence, for the usual law of friction, W(a) increases

with a so that Wa(a) > 0. In this case the first condition [100.36] is always

fulfilled, as follows from Equation [100.38] and from the condition W(a) > 0.

Hence the stability of the stationary state depends on the fulfill-

ment of the second condition [100.36].

Differentiating the functions R(a,O) and (a,o) with respect to a,

we have
da da

Ra d + R00 - Oa
da da

whence

Ra - aR , = a RO - R. 0b [100.40]

From Equation [100.31] we have

E E
R - cos0; Ra =-2a6e; 0 =--sine0; 0 = - 2ta [100.41]

m m

which gives

E
0.R - R,,p = 2a-(cos¢ + 6esin )m

From Equations [100.29]

E(a cosq + 6e sine) = a(w - a2 )a - 2e 2a
m

hence

aR - Ra,00 = 2aa 2 [(wI - a 2 ) - 262]

so that

(Ra 00- aaRO) da - 2at 2 
[(: - U2 ) -22

The second condition [100.36] can be written in the form

da> 0  if ) (2 222

dt+ 
26

[100.42]
da < 0 if w, < a + 2e2
dt

Since the term 6e2 is small and of the second order, it can be neglected, so

the conditions of stability become

dada>
0  if we > a

dt
[100.43]

da< 
0  if We < a

dt

fl - -- 111111 , i , 011 01 Y I



a These conditions for stability

F(a) D and, hence, for the existence of sta-

tionary oscillations, can be represented

graphically in a simple manner. Let us

SI trace the curve a = F(ct) determined by

Equation [100.30], which can be written
C I H as

I E 2 - 2)2 2 a]
B EW = a ( - + 46 a

H

D L Furthermore, let a = Fo(a) be the curve

acorresponding to the exact resonance

Figure 100.1 we(a) = ca. Assume that these curves

have the shape shown in Figure 100.1.

On the portion of the curve F(ot) situated to the left of the curve Fo(c), the
condition of stability exists in intervals such as AB, CD, .. , where the am-
plitude a increases with increasing frequency a. On the parts of the curve
F(a) situated to the right of Fo(a), on the contrary, stability exists in
intervals such as EF, HL, ... , in which the amplitude a decreases with in-
creasing frequency a. These peculiar conditions of stability of non-linear
external resonance cause the appearance of jumps similar to those which we
have already investigated in Part II in connection with the phenomena of hard
self-excitation. Thus, for example, if we excite a non-linear system from
rest by a gradually increasing frequency, the stable branch AB will be tra-
versed. At the point B, however, this stable zone ends and the amplitude
suddenly jumps up to the point B', after which for a continuously increasing
frequency of the external excitation the branch B'D will be followed. At the
point D the stable region on this branch ends, so that the amplitude drops
from D to D'. For a further increase of the frequency of the external peri-
odic excitation the branch D'L will be traversed.

If, however, the frequency is decreased, the amplitude will not pass
through the same stages it traversed during the period when the frequency was
steadily increasing. Thus, for example, if the frequency is decreased from
the value corresponding to the.point L, the region D'H will be traversed in a
stable manner. This region, as was just mentioned, was missed during the pe-
riod when the frequency was steadily increasing. If the frequency continues
to decrease, the amplitude will Jump abruptly from the value H to the value H'
and a further change will occur along the branch H'E, and so on.

These phenomena of resonance hysteresis may be more or less compli-
cated, depending on the form of the curves F(a) and Fo(a); they are usually

accompanied by quasi-discontinuous jumps and hence by similar discontinuities
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in the energy input into the oscillating system pupplied by the external peri-

odic source of energy.

As a special example, consider a non-linear system whose non-

linearity is limited only to x, that is, its non-linear function is of the

form f(x). In practice, this corresponds to a system with a non-linear spring

constant. From Equations [100.25] and [100.26], it is apparent that de = 0,

and from the second equation [100.25] we get

2 1r _ 2
we = -k + 1 a f(a sin7) sin-dr

"'m~ ~T~o

so that Equation [100.30] gives

Ea = + w,(a 0)
ma

[100.44 ]

[100.45]

From Equations [100.29] it follows that, for the plus sign, € = 7; for the

minus sign, 0 = 0. From [100.45] one can build the curve a = F(a). It is

noted that if we(a) varies with a, for instance according to the relation

e(ao) = wo + a when XA 0

the amplitude cannot increase

indefinitely for any a. This

circumstance is another typi-

cal feature of an undamped non-

linear resonance.

Interesting examples

of jump phenomena have been

obtained recently by Ludeke (6)

in his experimental work on

non-linear mechanical systems.

By varying the non-linearity

of the springs, different re-

sponse curves were obtained.

Figure 100.2 shows the experi-

mental and theoretical reso-

nance curves obtained for a

particular non-linear spring

of the "increasing stiffness"

type. The theoretical curve

was obtained by a graphical

method (7) the details of

which we omit here.
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The results of this section and of Section 99 were obtained on the

basis of linearized equations of the first approximation. In Chapter XIX the

study of the effect of a periodically varying parameter will be resumed, but

from a different viewpoint; there we will use differential equations with

periodic coefficients.
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CHAPTER XVII

SUBHARMONIC RESONANCE ON THE BASIS OF THE THEORY OF POINCARE

101. METHOD OF MANDELSTAM AND PAPALEXI

The preceding four chapters of this report have been devoted to a

survey of the theory developed by Kryloff and Bogoliuboff. We now propose

to review an alternative theory developed by Mandelstam and Papalexi (8) and

derived from the classical theory of Poincar6, which was discussed in Chap-

ter VIII. The essence of the Mandelstam-Papalexi method lies in extending

Poincar6's theory to systems having an external periodic excitation. Certain

advantages arise from this argument. First, the questions of the existence

and stability of solutions are treated in a relatively simple manner. Second-

ly, the description of the behavior of a system in terms of its characteristic

parameters is also relatively simple. Finally, the manipulation with general-

ized impedances and admittances used by Kryloff and Bogoliuboff is replaced

here by the analytical method, which is probably a more familiar approach to

the subject. It is noteworthy that the theory given in this chapter was found

to be a useful tool in connection with the numerous experimental researches

conducted by the group of scientists under the leadership of Mandelstam and

Papalexi.

102. RESONANCE OF THE ORDER n; DIFFERENTIAL
EQUATIONS IN DIMENSIONLESS FORM

The following analysis is a discussion of differential equations of

the form

E + x = pf(t, x, i) [102.1]

where the non-linear function f(t,x, ) now depends explicitly on the time t.

More specifically, in what follows we shall consider the equation

x + x = Pf(x,) + 0 sinn [102.2]

in which we let the argument of the periodic "forcing" function be nr instead

of 7 in order to prepare for the study of subharmonic resonance of the order

1/n. Many circuits of electron-tube oscillators can be represented by equa-

tions having the same form as [102.2], but we shall not enter into these

generalizations here.

We shall consider the standard circuit shown in Figure 102.1 repre-

senting an electron-tube oscillator with an inductive coupling M. The exter-

nally applied electromotive force E = E 0 sin wt is inserted either in the

anode circuit between M and N or in the grid circuit between P and Q. It has

been shown that, if the effects of the anode reaction and the grid current are



neglected, the differential equation of the circuit is

d2i di dE
CL d + CR + i = i + C d102.3]

dtt dt a dt

where ia = f(V,) is a non-linear func-

"I tion representing the anode current ia

as a function of the grid voltage V8 .
° It is apparent that V, = Md where M

P Q dt
E . is the coefficient of mutual inductance

between the anode and grid circuits.

L - -  It is convenient to transform Equation

[102.3] into dimensionless form.

R VWe introduce the following

dimensionless variables:

tw i a7 - =-- Ia=
Figure 102.1 n Io  aI

where Io is the saturation anode cur-

rent, occurring for a sufficiently high grid voltage Vo. The change of the

independent variable gives

ddi d dr di ,
dt dr dt dr n

di d di d (di dr di
dt2 - dt \dt = dt dt drn 2

dE dE dr dE [1024]
dt dr dt dr n [102.4]

In the new variable, moreover, E = E o sin wt becomes E = E o sin n-; hence,

dEdE

dt = Eo w cosnr

Equation [102.3] becomes

w2 d2i , di
CL 2 d + CR -- + i = i + CE o cos nr

n2 dr 2  n dr 0

If the "dimensionless current" I = - is introduced, the previous equationI
becomes

w 2 d21 w dl CE w
CL + CR I + cosnr [102.5]

n d-r n dr I0

If we assume that the resistance R of the oscillating circuit is small, the

autoperiodic frequency of the circuit is equal to its undamped frequency

Wo = 1/VEC to the first order. If the impressed frequency w is in the neigh-

borhood of the frequency nw o of the oscillating circuit, that is, if
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CL 2 - 2 - 1 +where << 1, the coefficient of d/dcan be written

where 4 << 1, the coefficient of dI/dT can be written

CRo CLRwn w2  Rn

n n 2Lw - n2 WO Lw

Equation [102.5] then becomes

Rn
- (1 + )eLw

d 2i
(1 + )d2

Rn dl I
+ (1 + ) Lw d I =

Lw d-r
CE owIo + C cosn -r

If we divide this equation by (1 + 4), noting that

1 1+4-
i+€ l+t

we obtain

dl Rn dl 4+ R + I 1 I
d-r2 Lw dr 1 +

Since la

equation

1 CEo w+ 1 + CEOw cosnr
1 + Io(1 + 4)

= i = f Vo0 where Vo is the saturation voltage defined

Vo = Mlow/n, the "dimensionless voltage"

di w
M

V dr n dl

o  MIo d
0

so that

Ia Vs = f(d

Setting Rn = 20 in Equation [102.7] and rearranging, we have
Lw

d +21 + -(d 20 + I + Qcos nr
de2  21 + dr d 1 +

where

CE o w
I (1 + )

_ CLE o w

lo L(1 + )

Eon2

IoLw

Letting

1 f  - 20 F d-)
1+ d-r -rj d7-

one obtains

d21
+ I =

dr"
F(d-) + I + Q cos n-r

dr 1 + 1+

Differentiating this equation with respect to T, and putting dI/dr = x, we

obtain

x + x = F'(x)x + x + osin n
1where = -Qn. Equation [02.10] has the same form as [

where X0 = -Qn. Equation [102.10] has the same form as [102.2].

[102.10]

[102.6]

1-

[102.7]

by the

[102.8]

[102.9]

.11 111 _. .____ .. __. _____. 1 111111111111 111 11111 IYIY



103. PERIODIC SOLUTIONS OF A QUASI-LINEAR EQUATION WITH A FORCING TERM

From the theory of Poincar6, Chapter VIII, it follows that a quasi-

linear equation

i + x = pf(x,x) [103.1]

with p = 0 admits an infinity of periodic solutions represented in the phase
plane by a continuum of concentric circles with the origin as center. For
p * 0, but small, periodic solutions may still exist in the neighborhood of
certain circles, the generating solutions. In the rest of the phase plane no
periodic solutions exist, but the phase trajectories are spirals winding onto
the closed trajectories, the limit cycles, which exist in the neighborhood of
the generating solutions.

For Equation [102.2] the situation is similar, for when p = 0 there
exists an infinity of such linear solutions of the form

x = asin-r - bcos7- + 1 2 sinn-r [103.2]1 - n'

The fundamental problem is the determination of the functions a(u) and b(p)
which will yield periodic solutions for the non-linear case, that is, when
p * 0 but is small.

If, when p - O, these constants reduce to ao and bo respectively,
that is,

a( ),u. 0 -)- ao; b( ) -,.o b [103.3]

the corresponding solution of the linearized equation is called the principal
or fundamental solution.

In order to establish the conditions under which the expression

[103.2] is the principal solution of Equation [102.2], it is necessary first
to determine the limit values [103.3] of a and b for p - 0 and then to ascer-
tain that the solution so obtained is stable in the sense of Liapounoff. In
this section we shall be concerned with the first part of this problem.

If the new variable

z = X 1 - 2 sinnr [103.4]1 - n

is substituted into [102.2], that equation becomes

+ z = pf z + A1 2 sinn-r , + 1 - n2 cosn-r) [103.5]
1 - n' 1 - n

Introducing into this equation the variables u and v defined by the equations

u = z cosT + z sinT

[103.6]
v = ZsinTr - ZCOST
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we find

i = (z + z)cosT = p (u,v,-r)cosr

[o03.7]
v = (z + z)sin-r = I(u,, v,7)sinr

where

i(u,v,T) = f u sin -r1 vcos-r + sin n, cos- + v sinr + 0 2 cos
1-n 1-n

The function 0(u,v,-) is periodic with period 27r. From Equations [103.4] and

[103.6] one obtains

x = u sin-r - v cos + 2 sinn- [103.8]1-n

Since this expression is of the same form as [103.2], the principal

solution of Equation [102.2] will be found when uo = a and vo = b for p + 0.

We can now apply the procedure of Poincare by assuming that, when

p << 1, the quantities u and v for 7 = 0 differ but little from a and 6, that

is,

u 7 o = a + a; v o0 = b + 8 [103.9]

where a and 8 are small numbers. From Equations [103.7] one obtains

u = u, o + uf (u, v,) cos-r d
0

[103.10]

v = 17 + p f (u, v, 7) sin -dT
0.

The functions u and v, on the other hand, can be expanded in terms

of the small parameters p, a, and 8; this, in view of [103.9], gives

u = a + a + uC 1(7r) + paD(r) + PEl(Tr) + p2 G1,(T) + • • •
[103.11]

v = b + , + pC2() + paD 2() + p#EE,(7) + p2G,(7-) + ...

where the dots designate terms of higher orders containing p
3, P 4

Comparing these expansions with [103.10], one finds

C1(T) = f,(a,,r) cosr dr; C2(T) = (f (a,b,r) sinr dr [103.12]
0 0

and also

D (7-) = d jcos dr; E,(-) = [] cosr d-r
0 0

[103.13]

D,(T) = sin7-dr; E 2 (-) = j[ in7 d
0 0

ilillimimiloni mid oil mo ll IINIlllll ilY Y ll l iililil i lIIII 111 Ih ,



where the symbols Fd] and [d designate the partial derivatives -o and 9

in which p = a = 8 = 0.

If u and v are periodic, it is clear that u(2r) - u(0) = 0 and

v(27T) - v(O) = 0; in view of [103.11], this implies that

C1(27r) + aD,(27r) + 8E,(27r) + pG1 (27r) + ... = 0
[103.14]

Cz(2r) + aD 2(27r) + 8E 2(27r) + #G 2 (2rr) + ... = 0

The problem of determining a and b in Equations [103.2], when p is small and

hence when a(p) and #(p) are small, therefore is one of finding values of a

and # which will satisfy Equations [103.14] and which will reduce to zero

when p = 0.

Since there are two equations, it is possible to determine a and f

as functions of p, provided

2, 2r

C (27x) = f ,(a,b,r)cosrdr = 0; C2(27r) = f0(a,b,7)sinTrdr = 0 [103.151
0 0

These equations give the first-order solution for a and b, since other terms

in [103.14] contain small factors a, 8, and p.

For solutions valid to the second order, the equations

aD(27r) + E,(27r) + pG,(27) + ... = 0
[103.16]

caD 2(27r) + #E 2(27) + uG 2(27r) + = 0

must be satisfied for any arbitrary but small p. These equations admit single-

valued solutions with a and # approaching zero as p approaches 0 if

A = D(2) E(2r) 0 [103.17]
D2 (27r) E 2(2rn)

Hence the problem of determining the limit values of the coefficients a and b

in Equation [103.2] when p - 0 is solved by Equations [103.16] provided the

condition [103.17] is satisfied.

104. STABILITY OF PERIODIC SOLUTIONS

The condition for stability of periodic solutions can be obtained

by utilizing the variational equations of Poincare. If we introduce in Equa-

tions [103.7] the quantities u = uo + 1 and v = v0 + , where uo and vo are a
periodic with period 27r and n and are small perturbations, and develop the

function 0(u,v,) in a Taylor series around the values u o and vo, we obtain

the variational equations
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dr.d77 GJ O cosT) 77 + (U COS T)

[104.1]

d = (pusinr) + (pBsinr)
dr

since the functions u o and vo satisfy Equations [103.7]. Equations [104.1]

have periodic coefficients. Suppose that nl(r), ,(r) and 772 (r), 2(r) are two

sets of solutions forming a fundamental system. One can assume the initial

conditions n1(0) = 1, 41(0) = 0 and 2(0) = 0, 2(0) = 1. Since l(-(r+ 2ff),

S(-r + 27r), ... are also solutions, one can write

1(7 + 27r) = a(r) + b672(7); ' ,(7r + 2r) = a, 1(r) + b62(r)
[104.2]

72(7 + 27) = c~ 1,(7) + d? 2(r); 2(r + 27) = C, 1(r) + d 2(r)

Whence, for r = 0, in view of the initial conditions,

71(27r) = a; 1(27r) = b; 172 (2nr) c; 2(27) = d [104.3]

It is possible to select a fundamental system so as to reduce

[104.2] to a canonical form where 77(7r + 27) = S7, (r) .. * . The formation of

such a system depends on the solution of the characteristic equation

F(S) a - S b 771 (2) - S 1(2) 0 [104.4]
c d-S 772(27r) 2(2n)-S

This can be written as

F(S) = S 2 + pS + q = 0 [104.5]

with

p = - [n,(2) + 2(2)] and q = [771(27r)2(2r) - ?72(27r) (27r)] [104.6]

The parameter p in [104.1] is supposed to be fixed; thus, if p = 0, d=

dr

771(7) = 42 () 1; 772() = 1(r) = 0 [104.71

Hence, for p = 0, p = -2 and q = +1. For p 0 but small, we conclude, there-

fore, that p < 0 and q > 0. The system is stable if the real parts of the

characteristic exponents h, and h2 (see Section 27) are negative, which im-

plies that e2"hlI < 1 and Ie2nh2 < 1, that is, the moduli of the roots S, and

S2 are less than unity. Equation [104.5] has roots with absolute values less

than unity only if

p > - 2; 1 + p + q > 0 [104.8]

which follows from the equations

1+ p + q = (S 1 - 1)(S 2 - 1); p =- (S + S2) [104.9]

,I I I j iki



On the other hand, for p = 0, p = -2 and q = +1, as was shown.

Hence, the conditions of stability [104.8] can be satisfied for small posi-

tive values of p only when the first non-vanishing derivatives of p and p + q

with respect to p are positive for p = 0.

In order to calculate these derivatives, replace I and € in Equa-

tions [104.1 ] by 7, and 4j and integrate between 0 and 27r. This gives

2,r 2x

i,(2n7) - q,(0) = 1,(2n) - 1 = p/f. 7,osT dr + p f 1 cosr dr
o o

[104.10]
2,r 27

1 (2 7r)- £1(0)= f1(2 7r) = p , sin r dr + u f l sin r dTr
0 0

Differentiating these equations with respect to p, one obtains

d 1(27) 2r 2x d

drl(2) -f(l7Cos7 + 0bF5 icos)dr + Plf(U d l CosT + v d cosT ) dT
0 0 dd

d 1(27)
d#

[104.11]
2j 2 sin + sinrT d-
fin " "vlsi)d7r" l(u d

7 sin(? + sin dr l sinr T ± )drd d
o o0

Passing to the limit p = 0 and taking into account [104.7], one gets

Sd77(27n)

d 1 # 0

SCcos dr T= D(27);

0, cos dr = E (27r);
0

d 2(27)]

d~j , 0

2r

[104.12]
= f, sinr dr = E 2 (27r)

0

From [104.6] and [104.12] one obtains

2(p + q)]
d dp 2

j = 0

D,(2) D2 (2 r)
=2

Ei(27r) E 2 (27r)

This leads finally to the following conditions of stability*

D1 (27) + E 2(27r) < 0 and
D(27r) D2 (2) > 0

E,(27) E 2 (2n)

* Conditions [104.14] have been formulated by Mandelstam and Papalexi (8). The proof given here was
developed by Professor W. Hurevicz.

= - [D(2n) + E 2 (27r)];
Sd(p + q)

du # =
= 0;

[104.13]

[104.14] '9rur;
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105. SUBHARMONIC RESONANCE OF THE ORDER ONE-HALF
FOR A SOFT SELF-EXCITATION

We shall apply the theory outlined in the two preceding sections to

the important practical case when n = 2. This case has already been investi-

gated in Chapter XVI by the quasi-linear method of Kryloff and Bogoliuboff.

We employ the usual polynomial approximation for the non-linear

element of the system, the electron tube, that is,

i,= f(V) = iga + a'V + a v + aV,'3 + a'V4 + asV,5  [105.1]

In Section 51 it was shown that for a soft self-excitation the approximation

can be limited to the first four terms, that is, a4' = a,' = 0, whereas for a

hard self-excitation the full polynomial [105.1] must be used. We have also

seen that the important terms are those containing the odd powers of V,, but

for greater generality we shall use the full expression [105.1]. Using the

notation of Section 102 and designating the "dimensionless" grid voltage
Vs dl-V8  = -, one has
Vo dr

Ia = f 1(x) = Ia + alx + a2x2 + a3x3 + a4x 4 + a5 x 5  [105.2]

Using Expression [102.8], one obtains the following expression for pf(x,i) in

[102.2]:

f(x,) (1 +

+ 2a 2x + 3a 3 x 2 + 4a 4x 3 + 5axz4] + x) [105.3]

Since in practice the coefficient a2 is very small, we can put

a 2  a, - 20(1 + ) 3a3 4a 4  A 5a 5
- p; = k; Az= ; A 4 = ; As1 + a2  a2  a 2  a2

Equation [105.3] then becomes

f(x,i) = (k + 2x + A 3x
2 + A 4x 3 + A5 x 4 )i + Lx [105.4]

a 2

For n = 2, Expression [103.2] is

x = a sin 7 - b cos 7 sin27 = X sin ( - ) - sin 2r [105.513 3

In this section we shall consider systems having soft self-excitation, that

is, systems in which A 4 = A 5 = 0. In order to determine the limit values

[103.3] for a and b, one must solve the equations

2Cr 2S d

f (a, b, r) cos dr = 0 and f (a, , ) sin dr = 0
0 0o o

Since the function 0(a,b,) is, by definition, f(x,i), in which x has the

value [105.5], we obtain

~I M _, I 1 IMI * ilh



2?r 2;r 2,r

0(a, b,7-) cos 7- dr = f(k + 2x + 4X2 ) cos- dr + f x cos dr
0 0  20

[105.6]
27r 2 2y

f ,(a,b,r7) sin - dr- = f(k + 2x + A 3 x 2 ) sin 7 dr + -x sin -rdr
0 0 2 0

Carrying out this substitution and the integrations, one finally obtains

a[k + (a2 + b 2+ 2X)] = Xb( 
+  2 )

2 [105.7]
b k+ (a2 + b + )] = - a( ±

From these expressions one obtains the square of the amplitude X of the prin-

cipal solution

X = a = A 3  + b- 2 a2- [105.8]

and the phase

X0 +
-1 b tan- 3 a2= tan - tan [105.9]

a X0
3 a2

The principal solution corresponds to real values of X, that is, to values of

such that X 2 > 0. Since the term - X0 2 in [105.8] is always negative, it

is apparent that this condition is fulfilled if the second term on the right

of [105.8] is positive and is greater than the value 2o2. Hence, if A3 and

k are negative, only the plus sign can be taken before the radical. If, how-

ever, A 3 < 0 and k > 0, the.condition X
2 > 0 may be fulfilled for either sign

of the radical. All depends, of course, on the magnitude of A 3 , k, and ,

that is, on the magnitude of the constants of the circuit.

Fulfillment of the condition X 2 > 0, however, does not mean that the

principal solution exists in practice. Its existence implies that the oscilla-

tion be stable, which requires that the conditions [104.14] be satisfied. In

Equations [103.13], which determine the functions D1(r), D2 (T), E1 (r), and

E 2(-), appear the expressions and ] previously defined, that is,
FdO _ Of Ox Of a d1 _ Of Ox 6f a

+ + [105.10]Ldu x au + au ' Ldvl - x v ± v
whc re

ho 2hox = usin-r - v cos-r - sin 2; = u cos r + v sin 7 - cos 27
3 3

Hence

S- sin - cos 7 - cos ; sin 7
Ou =u Ov Ov
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This gives
2 f 2 f

D,(27r) = f sinr cos-r d-r + cos2r d

o o

[105.11]
28f 21r

D,(27r) = sin 27dr + sJ sinr cos7r d
o 0

E 2 (2r) = - af sin cos dr + sin2 dr
0 0

Moreover, from [105.4], one has

f O 2(1 + A3x + a2  9 = k + 2x + A 3x2  [105.12]

The criteria of stability [104.14] can be applied now both to the principal

solution [105.5] and to the heteroperiodic one, in which a = b = 0. Carrying

out the calculations [104.14] in which D1 (27r), ... are replaced by their ex-

pressions [105.11] and [105.12] for both the principal and heteroperiodic

solutions, one finds that the conditions for stability, and hence for the

existence of the principal solution, are

k + X2 + ) < 0; A,[k + (X2 + 2 > 0 [105.131

For the heteroperiodic solution, they are
2 2  2

k + A 3 -o < 0; k + A3 O) + e - > 0 [105.14]
18 18 a2 9

The last inequalities, in view of [105.8], reduce to

+ 42 + -A X < 0; A 3 - - > 0 [105.15
a 2 4 9 a2] >0

These inequalities are satisfied if A 3 < 0 and the minus sign is taken before

the radical. We re-emphasize here the important point which has previously

been noted in Section 51, that is, for a soft self-excitation, the coefficient

of the cubic term in the polynomial approximation of the non-linear character-

istic must be negative. Under these conditions Expression [105.81 for the

square of the amplitude X becomes

X = + k + 9 a22 + A3 18 [105.16]

Since k = a -,2(1 + ), where 29 = Rn/Lw, it is seen that when k > 0 the
a2
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energy input from the electron tube outweighs the dissipation of energy in the

circuit, whereas when k < 0 the dissipation of energy exceeds the input. From

Equation [105.16] it is observed that the existence of a stable amplitude when

k < 0 depends on the values of other parameters. Physically this means that

the self-excitation of a system which is not normally self-excited ( oX = 0)

can be produced by the effect of the externally applied electromotive force

(Xo * 0). If X0 = 0, the quantity does not exist and one has X 2 = 4k which
A31 which

coincides with the equation previously obtained from the theory of Poincar6.

Comparing the condition of stability of the principal solution with

that of the heteroperiodic solution, one finds from [105.16]

2 2 2
S2 18 [105.17]
2 9 18

On the other hand, from [105.15] one finds

> k - [105.18]
a2 9 18

It is thus seen that one solution appears at the point where the other disap-

pears and vice versa, so that there is no interval in which both exist at the

same time. From the equation

2 2 2

- A- 18) [105.19]a2  9 18

where

k -a - 20 2 = o 20
a2  a 2  a 2

one can obtain two values 4' and 4" determining the limits of stability. These
limits determine the zone of discrepancy A4 = 4" - 4' between w and nw o within

which a stable principal solution exists. One obtains the following expression

for A4 valid to the second order of the quantity 0:

A4 = 4" - 4' = 2a 2  (1 - koA 3 - A3) kO [105.20]

Considering A4 as a function of Ao, it is seen that for

2 A 1 - koA 3 - 1 - 2koA 3] [105.21]

A4 is real, hence the zone 4" - 4' exists. Beginning with the value of A o
given by the equality sign in [105.21], the real values for A4 appear and A4

increases up to a maximum value

max = 2a V1 - 2koA 3  [105.22]

when the amplitude X0 of the externally applied excitation reaches the value
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2
Xo - 2(1 - koA 3) [105.23]1
9 A 2

For a further increase of Xo, the interval Af decreases and becomes zero when

2

9 A2 1 - koA s + V1 - 2koA] [105.24]

If one continues to increase Xo, the interval A becomes imaginary, that is,

it ceases to exist.

Summing up, one can say that the external periodic excitation having

a frequency w which differs somewhat from twice the frequency wo to which the

oscillating circuit is tuned is capable of producing oscillations in the cir-

cuit provided the coefficient = - 20
2  remains inside the interval corre-

sponding to values of Xo in the interval
12 2

S1 - koA 3 - V1 - 2koA3 = -' A 1  koA + Vl- 2koA3]

106. NATURE OF SUBHARMONIC RESONANCE OF THE ORDER ONE-HALF
FOR AN UNDEREXCITED SYSTEM

In the preceding section the conditions for the existence and sta-

bility of the principal solution were established without specifying the sign

of the quantity

k = a, - 20(1 + ) = 20f
a2  a2

As has been mentioned, this quantity characterizes the stability of the system

in the neighborhood of equilibrium, when the effect of the terms containing

the 'mall quantity x (see Equation [105.3]) is negligible. Hence when k < 0

at the point of equilibrium (x = 0) the system is stable, and when k > 0 it

is unstable. These conditions correspond to the existence of either a stable

(k < 0) or unstable (k > 0) singularity in a self-excited system without an

external force. When subharmonic external resonance is present, the situation

is different in that even when k < 0 the principal subharmonic oscillation may

arise if the amplitude of the external periodic oscillation is contained in

the zone Af specified in Section 105.

In this section we shall investigate a system where k < 0, that is,

a system which is stable without an external excitation. We call such a sys-

tem an underexcited one. If such a system is subjected to an external excita-

tion with frequency w differing from 2w o by a considerable amount, only a

relatively small heteroperiodic oscillation will be present. If, however,'w

approaches 2w0 so as to be within the limits of the zone A , the principal

oscillation will suddenly appear and will have exactly the frequency w/2. If

the parameter f is varied, the frequency of the principal oscillation will

- ~ IIYIYIIIYYIYYI I YIYIIYIUYIIIII~ iiYilllll IYII IIY IIYIIYYIIIYIIIIYII IUilllllllllll, li liY I~llilwll I ii lim 14114 41 ,
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always be w/2, but it is worth noting that the variation of 4 = 22 can

be accomplished in two different manners, that is, by varying either W or Wo.

If a is varied, the frequency of the subharmonic oscillation will follow the

variations of w, since it is always w/2; if wo is varied, the frequency of the

subharmonic oscillation will remain constant. It is thus seen that when the

principal oscillation exists its frequency is always 1/2 (or 1/n for subhar-

monic resonance of the nth order) of the externally applied frequency w, but

the range within which it exists is influenced by 4, that is, by both w and Wo

simultaneously. Moreover, the range A4 is a function of the amplitude X o, as-

was shown at the end of Section 105.

The phenomenon of subharmonic resonance of the order one-half (or,

more generally, of the order 1/n) presents features radically different from

those of ordinary linear resonance. It is sufficient to investigate the be-

havior of the function X 2 given by Equation [105.16]. Since the range within

which the principal solution exists as well as the amplitude X of this solu-

tion depend on 4 and not on w and wo individually, it is convenient to take
the quantity 4 as the independent variable instead of w as is customary for
linear systems.

If one plots the results pre-

viously obtained concerning the ranges
2  / A depending on the amplitude X0 of the

i/ external excitation, one obtains the

curves shown in Figure 106.1, which were

corroborated experimentally by physi-

cists of the Mandelstam-Papalexi school.

It is observed that this phenomenon of

S subharmonic resonance differs radically

from classical linear resonance, which

- has the appearance shown by the dotted

line. The phenomenon is entirely dif-

Figure 106.1 ferent when k > 0.

107. SUBHARMONIC RESONANCE OF THE ORDER ONE-HALF
FOR A HARD SELF-EXCITATION

The procedure remains the same as in Section 105 except that now we

have to introduce Expression [105.4] with A 4 * 0 and A 5s  0. Carrying out the

calculations, one obtains, instead of Expressions [105.7], the following ones:
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a[k + A3 (X2 + 2102) + X + 5X2 + 4b6'2])]
4± 4 -. X± 9 8 27 9 2

[107.1]

[k + (X2+ +, + + 5X + 4a2])]

0 A 4 X0 (X2 + X02 + 2b2)]
S 3 a2  4 3\ 6

Discussion of the conditions of stability in Equations [107.1] is too compli-
cated. One notes that in practice the coefficient A4 of asymmetry is very

small and can be neglected. One can further simplify the problem by assuming

that the square of the amplitude of the principal solution is much larger than

the forcing term, that is, X2 >> - With these simplifications, one obtains9.
the expression

A5 X4 + A3 X2 + /± 2  2 42
A X4 + A, X + k + --0 [107.2]
8 4 9 a 2

2  0

Applying the same procedure as that followed in Section 105, one finds the

inequalities

(AX2 + A + < 0; (AX2 + A) - [107.3]2(A 5 X 2  + 4a 2
2  0;)2 2

These inequalities can be satisfied simultaneously if A 5 X 2 + A s < 0 and the

minus sign is taken before the radical.

The stable solution for X 2 is then given by the equation

X = A + - kA2  9 ) [107.4]

Equation [105.9] for € is also applicable here.

If the external excitation is absent (X0 = 0 and f = 0)

X 2 = A + A 2  8k [107.51A5  A5
2  A5

The condition AsX 2+ A 3 < 0 implies that systems where both A. and A 5 are

greater than zero are to be excluded. Hence the following combinations of

signs are possible:

1. A 5 < 0, A3 < 0; 2. A 5 > 0, A3 < 0; 3. A 5 < 0, A 3 > 0

In the first two cases

2 A3  Az " 8k A A A\ 8k
X A A 5 5/1A or X/ [107.6]

A Ar AAA

I'm, 1m "1 11 INlIiI WINgI III IN 1 1,14 11111 III1I1 ]lili, Ill ,ll h,,i I1 lilil i l i6l hI II IiY, 0 Ai ii 1iMilil -- Iil ,



X 2 can be positive only when k > 0, that is, when the system is self-excited.

These two cases therefore characterize soft self-excitation in that the ampli-

tude increases with k beginning when k = 0.

The third case yields different results, however. It is noted that,

if A 3 > 0 and A5 < 0, the characteristic of the non-linear conductor, the

electron tube, exhibits an inflection point for a certain value of the ampli-

tude (see Section 51). In this case

X( A + + [107.7]

It is observed that in this case one can also have k < 0, which means that a

periodic oscillation may occur in an underexcited system. In order that no

self-excitation be possible one must have

A 2

Ikl > 3  [107.8]8 As

It can be shown, however, that in the interval

A2 A3A A2> Ikl > [107.9]61A5 81 As

the heteroperiodic oscillation is unstable. Thus in the interval [107.9]

neither the principal nor the heteroperiodic oscillation exists. This implies

that Ikl must be greater than A 3
2 /61A 5I in order to obtain resonance of the

order one-half.

Proceeding in the manner indicated at the end of Section 105 and

omitting the intermediate calculations, we obtain the following results.

By requiring that X 2 given by [107.4] be real, one finds that there

exist two intervals 4Ax (for a stable principal oscillation) and A~, (for a

stable heteroperiodic oscillation) with the condition

Af, > x 107.10]

which shows that in a certain region these intervals overlap. .Hence there

exists a zone in which both a subharonic and a heteroperiodic oscillation may

exist at the same time. It is recalled that for a soft self-excitation these

intervals do not overlap, so that the oscillation of one type appears at the

point where that of the other type disappears.

Moreover, from Equation [107.4] it is apparent that the positive F

quantity X 2 is composed of two essentially positive parts. One of these parts

-A3) is constant since it depends on the characteristic of the non-linear
element. Hence, if X 2 is considered as a function of , it is noted that the

curve X 2( ) cannot become zero either at the beginning or at the end of the

interval in which X 2 exists, but has to start from, and end at, a constant



91

value (-A-). This feature is character- x

istic of the phenomenon of hard self-

W excitation, as has been pointed out in

Section 51. This is illustrated by

Figure 107.1, where the "discrepancy" i c A Ie

is assumed to vary while the externally I

applied amplitude oX remains constant. I I

For I < 0 and for jII sufficiently large, I Ax I I
I I I I

there will be nb principal oscillation iI

and only a relatively weak heteroperi- I

odic oscillation until the value = o c

is reached; at this point a powerful Figure 107.1

oscillation of subharmonic resonance of

the order one-half will set in abruptly, see Point A in Figure 107.1. With a

further increase of e, the amplitude X increases relatively slowly, passing

through a rather flat maximum. For i = x" the subharmonic oscillation will

suddenly disappear. If, however, one starts with large positive values of e

and decreases them gradually, the subharmonic oscillation will start at the

point 5 = " and will disappear at C for = .x'. In other words, for in-

creasing {, the principal oscillation starts abruptly at A and ends abruptly

at D; for decreasing , it starts at B and ends at C in the same abrupt man-

ner. The sudden jump during both the appearance and disappearance of the

oscillation is numerically equal to (- ).

108. SUBHARMONIC RESONANCE OF THE ORDER ONE-THIRD

For n = 3 the principal oscillation [103.2] becomes

x = a sinr + b cos7 - 8o sin 37 [108.1 ]
8

Proceeding in the manner explained in Section 105, one obtains the following

expressions (compare with Equations [105.71):

ak + A(X2 + + ---b = - (a2 - 62) XoA3
4 32/J a2  32

[108.2]

O \ - a = + 2abb k + A3 (X2 + - L-+2 a-3
4 32 a, 32

Squaring, adding, and rearranging, one obtains

X2k + (X2 + 2 + 22 322

Leaving out the trivial solution X= 0, we have

[k + (X + A ) 2 + 2 32X [108.3]432 a 32
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If we let

k + A3
4 -(X2 + 32

Equation [108.3] becomes

S A 3  ± /- 7AA 4 2 k42
Y A 3 + 2A3 [108.4]

32 16 322 16 2 32 8 2

It is seen that the quantity under the radical can be positive only if k > 0.

In other words, a periodic oscillation with a frequency of one-third of the

externally applied frequency can exist only if the system is self-excited.

109. EXPERIMENTAL RESULTS

The preceding theoretical considerations can be verified by the fol-

lowing experiment. An ordinary self-excited electron-tube oscillator is induc-

tively coupled to a circuit containing an electromotive force with frequency

&. The oscillating circuit is tuned so that it has a frequency of approxi-

mately w/2. The oscillator has first been adjusted to a condition of soft

self-excitation, that is, self-excitation starts from zero at a critical value

of the coupling k if one gradually changes the feed-back coupling. When the

critical condition is thus established, the coupling is decreased below that

critical value (k < 0). Under such circumstances, the oscillator remains

underexcited. If the external excitation of frequency w is now introduced,

the previously discussed phenomena of resonance of the order one-half make

their appearance. If the discrepancy e remains outside the interval At (Equa-

tion [105.20]), the circuit exhibits a vanishingly small heteroperiodic oscil-

lation with a frequency the same as that of the external excitation. As soon

as 4 enters the interval Af, = 4," - I' , an intense subharmonic oscillation

with frequency w/2 sets in at 4 = 41; this oscillation passes through a max-

imum for a value of 4 in the interval A4, and disappears at 4 = 4", as shown

by Curve 1 in Figure 109.1. If one now reproduces the phenomenon for a some-

what smaller value X02 of the ampli-

x2 tude of the external excitation, one

obtains Curve 2, which has a smaller

Curve I X1 maximum than Curve 1. For a suffi-

ciently large value of oX the subhar-

monic resonance disappears entirely,

which is in accordance with Equation W
Curve 2 02 [105.24]. It should be noted that

in these experiments the oscillator

remains below the point of self-

excitation if the external electro-

Figure 109.1 motive force is withdrawn.



CHAPTER XVIII

ENTRAINMENT OF FREQUENCY

110. INTRODUCTORY REMARKS

If a periodic electromotive force of frequency w is applied to an

oscillator tuned to a frequency w o, one observes the well-known effect of

beats, or heterodyning, which can be heard through a headphone in a circuit

inductively coupled to the oscillator. As the difference between the two

frequencies decreases, the pitch of the sound decreases, and from linear the-

ory one may expect that the beat frequency should decrease indefinitely as

1W - 0ol - 0. In reality, the sound in the headphone disappears suddenly at

a certain value of the difference (w - w0o), and it is found that the oscilla-

tor frequency wo falls in synchronism with, or is entrained by, the external

frequency w within a certain band of frequencies. This phenomenon is called

entrainment of frequency, and the band of frequency in which the entrainment

occurs is called the band or the zone of entrainment. Figure 110.1 represents

the difference jw - wo plotted against the external frequency w; the interval

Aw is the zone of entrainment in which both frequencies coalesce and there

exists only one frequency w. On the basis of linear theory, the difference

1w - ol should be zero for only one value of w = wo, as shown by the broken

lines.

The phenomenon of entrainment of frequency is a manifestation of

the non-linearity of the system and cannot be accounted for by linear theory.

This effect was apparently recognized long ago, but its theory was not devel-

oped until recently. Thus, for example, Van der Pol, who developed the the-

ory of the phenomenon (9), observes that "the synchronous timekeeping of two

clocks hung on the same wall was already known to Huygens." Before Van der

Pol, Lord Rayleigh (10) observed a sim-

ilar effect in connection with acoustic

oscillations. Vincent (11), Mller IW- Wo0
(12), and Appleton (13) have also in-

vestigated the phenomenon. In recent

years Russian physicists have analyzed

the phenomenon in the light of modern

methods of non-linear mechanics, so

that at present the matter seems to be

well understood and offers an inter- A

esting field of research, particularly

in connection with the problem of syn- 0

chronizing oscillating systems. Figure 110.1
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The entrainment phenomenon has been analyzed in Chapter XVI on the

basis of the quasi-linear theory of Kryloff and Bogoliuboff, but it is pref-

erable to treat this matter in more detail, starting from the discussion of

Van der Pol and concluding the analysis with the topological method of And-

ronow and Witt.

Electron-tube circuits, as usual, offer a simple way of obtaining

the differential equations from which conclusions regarding the phenomenon of

entrainment can be formed. It must be noted, however, that the entrainment

effect is a general property of non-linear systems acted on by a periodic ex-

citation with a frequency ir the neighborhood of the autoperiodic frequency

of the system. Acoustic entrainment is also sufficiently well explored at

present.

As far as is known, no special studies of mechanical entrainment

have been made so far, but the following example is worth mentioning. If one

actuates a mechanical pendulum by a periodic non-linear torque, one obtains

beats if the two frequencies are sufficiently far apart; these beats can eas-

ily be observed as the envelope of oscillations recorded on a moving chart.

If the frequency o of the exciting moment approaches wo , the frequency of the

pendulum, the period on the envelope becomes longer. At a certain point, the

envelope suddenly becomes a straight line parallel to the motion of the re-

cording paper, and beyond this point no further beats are observed. The non-

linearity of the torque in this case is generally due to the kinematics of the

mechanism which drives the pendulum by springs attached to a crank.

One may assume, therefore, that the phenomenon of frequency entrain-

ment arises whenever there is a non-linearity in the differential equation of

a system subject to an external periodic excitation with frequency sufficient-

ly near the autoperiodic frequency of the system.

111. DIFFERENTIAL EQUATIONS OF VAN DER POL

The differential equation of the circuit shown in Figure 111.1, in

which E is an external electromotive force with fixed frequency o, inserted in

the oscillating circuit, is

di 1 l di
L- dt + Ri + tidt - M d- E sinw l t  [111.1]

Assuming that the anode current i ,, considered as a function of the grid volt-

age eg,, is approximated by a cubic parabola, we have

i,= f(eg) = Seg(1 - ) [111.2]
-- sv2] 1 1
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Figure 111.1

where V is the "saturation voltage," which was defined in Section 51, and S

is the transconductance of the electron tube. As usual, we shall neglect the

grid current and the anode reaction. Introducing the notations

eg = MS R 1 MS B E 2 1

V CV ' LC L' 3 LC' V, 0  LC

we obtain

- c + yi 3 + v = Bw 2 sinw 1 t [111.3]

It is noted that the left side of this equation is of the same general type

as Equation [44.1].

Van der Pol assumes as the solution of this equation the expression

v = bl sin wit + b2 coswot [111.4]

where b, and b2 are certain slowly varying functions of time. Substituting

this expression into [111.3], equating like coefficients, and neglecting sec-

ond derivatives, we obtain

( b22b, + zb2 - ab,( - a2) 0a0

2 [111 .5]
2b2 - zb - ab2(1 - 2) = - Bwo

where

z = 2(w0 - w); b2 = b 2 + b2; a02 of [11 .6]
-y
4

It is apparent that, if b, and b2 were constant, the solution v would be
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periodic with frequency cw; according to the previous definition we would call

such solutions heteroperiodic solutions.

Van der Fol discusses two particular cases of Equations [111.51,

namely, linear oscillation and absence of external excitation. In the first

case 7 = 0, ao2 = 00, and the equations are easily integrated. In the second

case the approach to a limit cycle is ascertained, as is to be expected since

in this case we have the normal Van der Pol equation.

For the general case, that is, when y * 0 and E0 sin wt * 0, we

shall follow the presentation of Andronow and Witt (14) which will permit es-

tablishing a more definite connection with the representation of the phenom-

enon in the phase plane. The results which will be so obtained coincide with

those obtained by Van der Pol by a somewhat different argument (9).

It is noted that Equations [111.5] are of the form studied by Poin-

care, that is,

db db2db= = P(bl,b,); = Q(bl,b 2)
dt ' dt

if b, and b62 are taken as the variables of the phase plane; thus the condi-

tions for a stationary oscillation, b, = constant and b2 = constant, reduce to

P(bl, b2) = Q(bl, b2) = 0. Hence the singular points of the system [111.5] give

precisely the condition for the heteroperiodic state with a single frequency

w1 . In the neighborhood of the singular points, b, and b2 are slowly varying

quantities. This may be expressed by saying that the solution [111.4] is an

amplitude-modulated function, the period of modulation approaching infinity as

the frequencies wo and w, approach each other.

It is seen that the whole procedure is now reduced to the investiga-

tion of the singular points of the differential equations [111.51.

112. REPRESENTATION OF THE PHENOMENON IN THE PHASE PLANE

If we introduce the notations

bI  b2  z Bw0  2 2 t Y
x =y ; a = -; A =r = x + y = [112.1 ]

ao  ao  a ao0 2

Equations [111.5] become

dx= x(1 - r") - ay
dr

dydy _ ax + y(1 - r ) + A

The equation of the phase trajectories is

dy A + ax + y(1 - r2) [112
dx - ay + x(1 - r")



To investigate the nature of the singular point (xo, yo) we use the standard

procedure given in Chapter III. If we let

x = xo + ; Y = Yo + 7 [112.4]

the differential equations [112.2] become

d_ = p(Q,7) = m + ni + terms with '2, 72,
dr

[112.5]
dr = Q(,4) = p + qg + terms with p2, 2

dr

The nature of the singular point (xo, yo) is given by the form of the roots of

the characteristic equation

S 2 - (m + q)S + (mq - np) = 0 [112.6]

For a stable singular point it is necessary to ascertain first that the singu-

larity is not a saddle point, which implies that (mq - np) should be positive.

If this necessary condition is fulfilled, then the condition of stability is

that the term (m + q) should be negative. This implies that the real part of

the roots should be negative; thus one has either a stable nodal point when

the roots S, and S 2 are real or a stable focal point when S, and S 2 are con-

jugate complex. If the system [112.2] has stable singular points, the motion

approaches an oscillation with a single frequency o, since both bl and b2 tend

to become constant for t oo.

If the system [112.2] possesses a limit cycle, the functions x and

y, and hence also 4 and n, are periodic with period 27. The quantities bl and

b2 are also periodic, which means that the Van der Pol solution [111.4] for

this system represents beats between the heteroperiodic and autoperiodic

oscillations.

We know from the theorem of Bendixson, Chapter IV, that any non-

closed trajectory which neither goes to infinity nor approaches the singular

points winds itself on a limit cycle. This limit cycle is stable for t +-+oo

and unstable for t - -a. From a practical standpoint only the stable limit

cycles are of interest; we know from Section 25 that in the interior of such

cycles there exist, generally, 2n + 1 singularities whose sum of indices is

always +1. This means that, if the number of saddle points is n, the number

of singularities with index +1 is necessarily n + 1 so as to make the sum of

the indices +1.

The "coordinates" (xo, yo) of the singular point are given by the

equations

ap p(1 - p)
xo A [112.7

where p = r0
2 is determined by the equation

-- -- llN n l4 , I I 1 n



a2 p + p(1 - p2) = A2  [112.8]

For a fixed A, Equation [112.8] represents in the (p,a)-plane a curve of the
third degree which gives the "amplitudes" Vy = ro of the singular points for
any a = 2(wo - w)/or. The quantity A is the parameter of the family of the
curves [112.8]. Any point of the (p,a)-plane represents a singular point of
the differential equations [112.2] for a given value of the parameter A. The
nature of the singular points in the (p,a)-plane depends on the nature of the
roots of Equation [112.6].

113. NATURE AND DISTRIBUTION OF SINGULARITIES;
TRANSIENT STATE OF ENTRAINMENT

The curves represented by Equation [112.8] have the appearance shown
in Figure 113.1. For sufficiently small values of the parameter A the curve
consists of two branches, M, and M 1'; the figure shows these branches for
A2 = 0.1. For an increasing A the branch M, increases in size, and the branch
M, rises until both branches join as shown by the curve M. If A is further
increased, there exists only one branch M 2 shown for A

2 = 1. It is noted that

table Nodal Points

B M, '! 0.1 1 131

Stable Stable
Focal Points Saddl Points Focal Points

0 aPoints Points
M ' 0.1 Unstable Nodal

Points

Figure 113.1

the curves M of the family exist only above the a-axis and are symmetrical
with respect to the p-axis. If one substitutes Expression [112.44 into Equa-
tions [112.2], one obtains Equations [112.5] with the following values of the
coefficients m, n, p, and q:

S- (1 - p) - 2x] + - (a + 2xoy o ) + terms in '2, rl ,
dt0

[113.1]
dt= 4[a- 2x 0yo + 4[(1- p)- Zyo2] + terms in 22, .2,dt
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where x0o and yo are given by Equations [112.7]. Thus the characteristic equa-

tion of the system [113.1] is

S2 - 2(1 - 2 p)S + [(1 - p)(1 - 3p) + a2] = 0 [113.2]

From this equation one can determine the zones of separation of the roots of

various types as was shown in Chapter III. These zones, when drawn in the same

(p,a)-plane as Figure 113.1 in which the curves [112.8] representing the loci

of singular points are drawn, will indicate the nature of singularities in

that plane.

We note first that the region of saddle points is determined by the

inequality

(1 - p)(1 - 3p) + a2 < 0 [113.3]

for, with this condition, the roots are real and of opposite sign. The curve

(1 - p)(1 - 3p) + a2 = 0

is an ellipse E with its center situated on the p-axis, and Condition [113.3]

means that the region of saddle points is situated inside this ellipse. The

quantity under the radical sign in the expression for the roots S, and S 2 of

[113.2] is p 2 - a 2 . Hence the straight lines B and B 1, expressed by

p + a = 0 and p - a = 0

which bisect the first and the second quadrants represent the divides between

the real roots and the complex ones. These lines are tangent to the ellipse

at p = 1/2. Inside the angle BOB1 formed by these lines lies the zone of nodal

points and saddle points; outside it, the zone of focal points. The area in-

side the ellipse, as was shown, is the zone of distribution of saddle points.

The condition for negative real parts and hence for stability is

clearly

(1 - 2p) < 0

Hence the line PP' of the equation p = 1/2 is the divide separating the roots

with negative real parts (stable singularities) from those with positive real

parts (unstable singularities). The former lie above that line; the latter,

below it. This completes the picture of the distribution of the various sin-

gularities in the (p,a)-plane. From [112.8] one has

A2
a = + - (1 -p)

For a = 0 the ordinate of the curve is given by the equation

p 3 - 22 + p - A 2 =- 0 [113.4]

The condition for the reality of the three roots is A 2 < 4/27. For A2 > 4/27,

MMII I 111MINN IN I, I "Al 14,111d 1 II
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there exists one real root, and two conjugate complex roots which are of no

interest here.

For 0 < a2 < a1
2 , where a, is the abscissa of the point of inter-

section of the curve [112.8] with the ellipse (1 - p)(1 - 3p) + a2 = 0, Equa-

tion [112.8] has three roots of which only one is stable as can be seen from
Figure 113.1. For a1

2 < a 2 < + .o, there exists only one unstable root. Hence,

only in the region 0 < a2 < a can the Van der Pol solution [111.4] approach

a stationary periodic solution with the heteroperiodic frequency w1 , since
only in that interval does there exist a stable singularity so that the coef-
ficients b, and b2 in the Van der Pol equations [111.5] approach fixed values
as t oo.

From Equations [112.2] it follows that the trajectories are directed
radially inward for sufficiently large values of r2. Hence, if only one un-
stable singularity exists, we can assert by the Bendixson theorem that a limit
cycle exists and hence an autoperiodic oscillation wo beating with the exter-
nal frequency wl. Hence, whenever a2 > al2 , which corresponds to the existence
of a single unstable singularity, the solution [111.4] of Van der Pol has
slowly varying coefficients b, and b2 characterizing the heterodyning of the
two frequencies w o and wl. If, however, a2 < a1

2 , one singularity is stable

with index +1, and the other two are unstable. No limit cycle exists in this
case, and the stable singularity gives rise to a stationary heteroperiodic os-
cillation, as previously mentioned.

The topological study of the trajectories of the Van der Pol equa-
tions [112.2] in the zone of entrainment can be pursued by constructing the
family of curves [112.8] for different values of the parameters with superim-
posed regions of distribution of the various singular points, as shown in Fig-
ure 113.1. A topological analysis of this kind was carried out by Gaponow (15)
on the basis of the general considerations of Chapter IV, where singularities

and limit cycles are considered as either

sources (if they are unstable) or sinks (if

they are stable) for the "flow" of trajec-

tories in the phase plane. Such an analysis
Unstable

Singularity gives some idea of the transient state of
the entrainment phenomenon under various

conditions. Without going into the details

of this analysis, since they have been giv-

en in Part I, it is sufficient to indicate

a few interesting results.

In pure entrainment, when only a

single stable singularity exists, the tra-
Figure 113.2 jectories approach it in the usual manner
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depending on whether the singularity lies

in the region of stable nodal points or in Stable Nodal
that of stable focal points. When one un- Point

stable singularity exists, in view of the

fact that for large values of r Equations

[112.2] indicate the inward flow of tra-

jectories, the Bendixson theorem indicates Saddle Point S

that a stable limit cycle exists, as shown

in Figure 113.2. This condition, as was

just mentioned, corresponds to the quasi-

periodic Van der Pol solution [111.4] when

heteroperiodic and autoperiodic frequen- Stable Focal
Point

cies exist and no entrainment takes place.

According to the form of curves

[112.8] and the different location of the

regions of stability (or instability), Figure 113.3

more complicated situations may arise, as was shown by Gaponow. Thus, for in-

stance, for certain values of the parameters resulting in a particular shape

of the curve [112.8] and for a certain range of a = 2(wo - w 1)/a, one may have

three singular points, namely, a stable nodal point, a saddle point, and a

stable focal point. The flow of trajectories for this situation is shown in

Figure 113.3. Since there is a saddle point S, there also exists a separatrix

K formed in the neighborhood of S by the stable asymptotes of the saddle point

S. There is one singular trajectory SN issuing from S along its unstable

asymptote and approaching the nodal point N. The focal point F is approached

by a singular trajectory issuing from the other unstable asymptote of S. At

a large distance from the singularities the trajectories are inwardly directed

as shown. Depending on the form of the separatrix, the trajectories may ap-

proach either the nodal point or the focal point. Their approach to the nodal

point will be aperiodic from a definite direction; their approach to the focal

point will be in the manner of a spiral, which indicates an oscillatory damped

motion.

Another possibility is the combination of a stable nodal point, a

saddle point, and an unstable focal point. This configuration is shown in

Figure 113.4. The separatrix forms a closed loop with the unstable focal

point in its interior. The trajectories arriving from distant points of the

phase plane approach the stable nodal point.

A number of other combinations are possible, particularly when two

singular points coalesce so as to form a singularity of a higher order. Here

the approach to the state of entrainment may be relatively complicated. This
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coalescence of singular points occurs
Stable whenever the line a = a, in Figure 113.1Nodal
Point becomes tangent to the curve of singular

points defined by Equation [112.8].

This transient state of the en-

trainment process can be studied oscillo-

Saddle Point graphically by analyzing the form of the

envelopes of the oscillations. When en-

trainment is reached (16), the envelope

becomes a straight line.

114. STEADY STATE OF ENTRAINMENT
Unstable Focal

Point During entrainment the hetero-

Figure 113.4 periodic and the autoperiodic oscillations

become "locked," and the former imposes

its frequency on the latter. In the Van der Pol solution [111.4] the quanti-

ties b, and b2 then become constant and one can write

v = b sin wt + b2 Cos t = 1+ 2 [sinw1tcos + cosw1 sin]

= b sin(w 1 t + q) [114.1]

where

bl bl b2 b2

1 2b 2 cos ; +b b2  b = Sine; b = 6/b2 + b

and where b is the amplitude and ¢ the phase of the oscillation relative to

the externally applied voltage. One has

b2 yO 1-- p (1- r2)a
tan = b X a - 1) [114.2]

bi zo a 2 (wo - wl)

where a and p are the coordinates of the stable singular point in the (p,a)-

plane. The amplitude b of the oscillation is
6= x2  

= V3 pl pa 2 +(1 ) 2 -k c [114 3]
b = + b = ao o = + 2 = k [1143

where k = a 2 + 1 - 2) is a factor depending on the difference of frequen-

cies wo - ci and the ordinate p of the stable singular point. It is noted

that the quantity

a - [114.4]

is the amplitude of the generating solution of Poincar6; compare with Equation

[54.5]. It is thus seen that the autoperiodic amplitude ao is affected by the

entrainment factor k during the steady state of the phenomenon.
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115. ACOUSTIC ENTRAINMENT OF FREQUENCY

The preceding theory of entrainment was established in connection

with an electron-tube circuit where experimentation is relatively simple and

results can be established in terms of known parameters of the circuit and of

the electron tube.

As was mentioned in Section 110, the phenomenon of acoustic entrain-

ment was discussed by Lord Rayleigh in his investigation on sound. More spe-

cifically, he says that if two organ pipes of slightly different frequencies

are placed near each other, the beats disappear and both pipes oscillate at

the same frequency. Later he reproduced an analogous experiment with electric-

ally driven tuning forks of slightly different frequencies; the entrainment

effect is evident if the tuning forks are "coupled" by an acoustic resonator.

A recent study of this

effect was made by K. Theodorchik T A, A2  M

and E. Chaikin (17) at the sug-

tion of Mandelstam and Papalexi.

Without going into details, it Is

sufficient to mention briefly the

experimental arrangement used.

Figure 115.1 shows an electron-

tube oscillator; in its anode cir-

cuit a telephone T is inserted and

in its grid circuit a microphone

M. The telephone and the micro-

phone are also coupled acoustic- Figure 115.1
ally by two armatures A, and A2

fixed to the same rod R. The rod is centralized by a spring and provided with

a damper which is not shown. The mechanical system AjRA 2 is described by a

linear differential equation of the second order having a frequency w. The

oscillator is a non-linear self-excited system with frequency wo on the limit

,cycle. If the difference w - wo is appreciable, one finds that there are beats

in the system, indicating the presence of both frequencies wo and w. If the

value of this difference is decreased, one finds that both frequencies coa-

lesce into a single frequency w which corresponds to the external frequency

mentioned in Section 110. The "non-linear frequency" wo is thus entrained by

the external one w, and it is found that the ratio w w- of the zone of en-

trainment is proportional to the ratio a/ao where a is the amplitude of the

oscillations of the mechanical system driven by the acoustic pressure emitted

by-the telephone, and ao is the amplitude of the autoperiodic oscillation in

the electron-tube oscillator.
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This method has been aplied in measuring acoustic intensity by ob-

serving the magnitude of the band of entrainment, knowing a0, and determining

the proportionality factor by calibration.

116. OTHER FORMS OF ENTRAINMENT

The phenomenon of entrainment, as we have already indicated, has im-

portant applications in problems in which it is desirable to obtain synchron-

ization of frequencies. For example, the problem of maintaining the speed of

an electric motor with a high degree of accuracy can be solved by synchroniz-

ing the motor's frequency with the standard frequency of a quartz oscillator,

which can be maintained with great accuracy. If such synchronization can be

obtained, the motor speed can be maintained with the same accuracy. In this

particular example, the frequency fq of the quartz oscillator is generally

many times greater than the rotational frequency fm of the motor. This diffi-

culty is eliminated, however, by a frequency-demultiplication network, which

permits obtaining a frequency fq/n if n is the demultiplication factor. The

problem then consists of "locking" the two frequencies fq/n and fm by some

kind of entrainment phenomenon.

In the preceding sections of this chapter we have investigated the

phenomenon of entrainment starting from a particular circuit investigated by

Van der Pol. The non-linearity in this circuit is due to the characteristic

of the tube which was approximated by retaining the cubic term in the repre-

sentation of the non-linear function ia = f(eg) by a polynomial. For practi-

cal purposes, this type of entrainment is difficult to obtain because of the

small zone of entrainment and also because it is difficult to modify the char-

acteristic of an electron tube so as to produce more favorable conditions for

entrainment. In view of this, numerous schemes have recently been developed

in which the zone of entrainment is artificially made large by suitable cir-

cuits. In this manner one obtains a kind of artificially produced entrainment

which is more adequate for practical purposes than the simple type investi-

gated by Van der Pol.

As an illustration we shall investigate one such scheme suggested by

Kaden (18) and shown in Figure 116.1. We shall omit the mathematical analysis

of the circuit, since it follows the argument previously explained, and will

give only an elementary explanation of its behavior. The electron tube V1

operates as an oscillator with frequency o, having C1 and L, as its oscillat-

ing circuit. The coefficient of inductance L1 can be varied within certain

limits because the coil L, is wound on an iron core whose state of magnetic

saturation can be varied by changing the direct current i flowing through the

coil G wound on the middle leg of the magnetic circuit M as shown. There are



105

Figure 116.1

two other coils: Ki, which produces a feed-back voltage to the grid of V,

which merely maintains the oscillation with frequency wl, and the coil K 2

transmitting the oscillation at that frequency to the second tube V2 working

as an amplifier. The output of V2 through a transformer is coupled with the

branch AB of the synchronizing network K. The network K also has a second

branch CD into which the external frequency W 2 is inductively transferred.

The synchronizing network BACD is closed on a bridge N formed by rectifying

elements; the direction of rectification is shown by the arrows. The diagonal

points of the bridge N are closed on the saturation coil G of the iron-core

reactor. In the circuit BACD there are two induced voltages: El with fre-

quency w, induced in the AB-branch, and E 2 with frequency W 2 induced in the

CD-branch. We shall consider the case when the difference w 2 - = AW is

small. The vector diagram is shown in Figure 116.2; the vector El can be

assumed to be fixed; E 2 rotates with frequency Aw in one

direction or the other, depending on the sign of the dif- o'

ference W 2 - w1. The resultant vector E, is the voltage

between B and D and-, to a certain scale, it represents E2

the rectified current i flowing through the coil G.

The frequency w1 = 1/VLi(i)C where Lj(i) is a

non-linear function of i decreasing with increasing i.

It is apparent that, if w2 i w , one has the relation

do = - = A [116.1]

dt

Assume, for instance, that initially Aw > 0,

which means that the extraneous frequency w2 is greater

than the frequency w1 of the oscillator. In the vector Figure 116.2

1111M, i11fi k 110111,1
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diagram, the vector E 2 rotates in the direction of the arrow A, that is,

towards the advance, around the end of E, as center. The resultant Er in-

creases, and, as with the rectifier-bridge arrangement shown, the current i

is proportional to Er. The current will also increase so that L 1(i) will be

reduced. This accounts for an increase of the oscillator's frequency w, un-

til it becomes equal to w 2. The equilibrium point

de
dt - - w = '0 [116.2]

is stable. This can be shown easily by repeating the argument for w 2 < w 1

provided 0 is contained between 0 and r. Thus, depending on the adjustment

of the circuits, there is always an equilibrium phase angle 0(0 < €o < 7r)

for which [116.2] holds; that is, entrainment of the frequency wo by the ex-

ternal frequency w 2 is artificially produced.

If the frequencies w, and w 2 are far apart, the vector E 2 rotates

rapidly with respect to the fixed vector E,, and in view of the finite time

constants of the circuits the magnetic saturation control may not be suffi-

ciently rapid to adjust the frequency w, so as to "lock" it in synchronism

with the frequency w 2. One would then have beats due to the existence of

both frequencies w, and w 2.

In the example given here the entrainment phenomenon is possible

because of the non-linearity of the parameter Ll(i). If the parameter L*

were constant, that is, in the absence of the saturable iron core, it would

be impossible to obtain the synchronization of the two frequencies wo and W 2,
and the zone of entrainment would be absent.



CHAPTER XIX

PARAMETRIC EXCITATION

117. HETEROPARAMETRIC AND AUTOPARAMETRIC EXCITATION

In Section 99 it was shown that it is possible to obtain self-

excitation of subharmonic oscillations by varying periodically a parameter

of the system. In this chapter we shall investigate this phenomenon, called

parametric excitation, from a somewhat different point of view and will in-

troduce certain generalizations.

It is noteworthy that the phenomenon of parametric excitation has

been known for many years. Thus, for example, Lord Rayleigh describes in

Reference (10) an old experiment of Melde (19) which he reproduces and ana-

lyzes. In this experiment a stretched string is attached to a prong of a

tuning fork vibrating in the direction of the string; it is observed that

periodic variations of frequency f in the string's tension account for the

appearance of transverse vibrations of the string with a frequency of f/2.

Later, M. Brillouin (20) and H. Poincare (21) investigated a similar effect

in electric circuits. Quite recently certain Russian physicists under the

leadership of Mandelstam and Papalexi (22) investigated these phenomena in

greater detail; we propose to give a brief outline of these researches.

It is useful to define two types of parametric excitation, hetero-

parametric and autoparametric. In heteroparametric excitation, self-excitation

is caused by the variation of a parameter expressed as an explicit function

of time. In autoparametric excitation the variation of the parameter depends

directly on some physical quantity and thus is an implicit periodic function

of time.

The vibrations of the string in Lord Rayleigh's experiment are

clearly heteroparametric in that the variatibn of the parameter is produced

by a tuning fork having a definite frequency. Parametric excitation occurs

here with a frequency equal to one-half the external frequency of the tuning

fork. The same remark applies to the circuit described in Section 99 where

the capacity is modulated as an explicit function of time.

On the other hand, as has been shown on numerous occasions, self-

excitation of electron-tube circuits can be traced to the fluctuating trans-

conductance of the tube caused by the oscillatory process itself. In all

electron-tube circuits the periodic variation of the parameter, the trans-

conductance, appears as an explicit function of the physical quantity which

characterizes the process, for instance, the grid voltage, and depends only

implicitly on time. Self-excitation of electron-tube circuits therefore be-

longs to the autoparametric type. The concept of autoparametric excitation

111 11 1 1111, 1 111 1mh



108

is not particularly interesting because most excitations of the autoparamet-

ric type can be treated by the standard method of Poincar6.

With heteroparametric excitation, however, the situation is differ-

ent. Since one or several parameters of the system appear as explicit period-

ic functions of time, the problem is reduced to the solution of differential

equations with periodic coefficients, that is, equations of the Mathieu-Hill

type; more specifically, the condition of self-excitation of the system is

equivalent to the existence of unstable solutions of such equations, which

means that an initially small departure increases because of the periodic var-

iation of a parameter.

It must be noted that, although the theory of the Mathieu-Hill equa-

tion is necessary for the establishment of the conditions of heteroperiodic

excitation, there is nothing in that theory which would permit determining the

amplitude of the ultimate steady state. This difficulty arises from the fact

that the known types of Mathieu-Hill equations are linear equations and, as

such, possess unstable solutions increasing indefinitely in their unstable

region. In order to establish a theory of heteroparametric excitation ap-

proaching,a definite steady state, one should apply some kind of non-linear

differential equation with periodic coefficients. Unfortunately, no theory

involving non-linear equations with periodic coefficients exists at present.

These theoretical difficulties limit a further analysis of hetero-

parametric excitation. It is interesting to note that Mandelstam and Papalexi,

who developed a heteroparametric generator, an electric machine described in

Section 124, were able to demonstrate that, in the absence of non-linearities

in the circuit, the voltage builds up indefinitely until the insulation is
punctured. On the contrary, by providing a non-linear element in the circuit,
the voltage builds up to a finite value, and the generator functions in a sta-

ble manner. In spite of these theoretical limitations, equations with period-
ic coefficients can be used to determine the conditions of heteroparametric

excitation in a general manner, as will be shown.

118. DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

Consider a differential equation with periodic coefficients (23)

z + 2p(t)z + q(t)z = 0 [118.1]

where p(t) = p(t + 27r) and q(t) = q(t + 2r). If we introduce a new variable
x defined by the equation

z = ze [118.2]

Equation [118.1] becomes

Y + M(t)x = 0 [118.3]1

where M(t) = q - p2 - p is a periodic function.
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In practice one frequently encounters the following expressions for

M(t):

1. M(t) = 0, 2 + ao 2 cos kt, in which case Equation [118.3] is called

the Mathieu equation, or

2. M(t) is a Fourier series, wo2 + A 1 cos kt + A 2 cos 2kt + ... +

B 1 sin kt + B 2 sin 2kt + ... , in which case [118.3] is called the Hill

equation.

Since the theory of the Hill equation is similar to that of the

Mathieu equation, it is sufficient to consider the latter. The Mathieu

equation

2 + (w0
2 + 0 02 COS kr) x = 0 [118.4]

by a change of the independent variable t = kr can be reduced to the form

5 + (W2 + a2 cos t)x = 0 [118.51

where wk = wo and ak = ao. The essential feature of the Mathieu equation

[118.5] is that, although the function M(t) = 2+ 0 2 cos t is periodic, its

solutions are not necessarily periodic although under certain conditions they

may be periodic. If they are periodic, the solutions are given in terms of

the so-called Mathieu functions (23). Since Equation [118.5] is linear, one

can assert that, if one knows two particular solutions f, and f2 forming a

fundamental system, the general solution will be of the form

F = Alf, + A 2 f 2  [118.6]

where A, and A 2 are arbitrary constants. Moreover, since fl(t + 27r) and

f2 (t + 27r) are also solutions, one can express them in terms of f1 (t) and

f2(t) by equations of the form

f (t + 27r) = a f(t) + bf 2 (t)

[118.7]
f 2 (t + 27r) = cf,(t) + df 2(t)

From [118.6] one has also

F(t + 27r)=A 1fl(t + 2r) + A 2 f 2 (t + 27r) [118.8]

From the theorem of Floquet (24) we know that there is a solution F such that

F(t + 27r) = Alf,(t + 27r) + A 2 f 2 (t + 2rr) = aF(t) [118.9]

If we select the following initial conditions,

f,(0) = 0; fl'(0) = 1; f(O) = 0 [118.10]

we observe that the Wronskian

f, (0) f2 (0)
# 0

f; (0) f2(O)
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and thus the system of solutions f, and f2 is fundamental. From Equations

[118.71 one gets for t = 0

f (27r) = b; f2(27r) = d; f(27r) = a; f2(27r) = c [118.11]

From [118.9] one obtains

F(t + 2))= A,(af, + bf2) + A 2 (cf + df 2 ) [118.12]

Since f, and f2 are the solutions of [118.5], clearly

I" + M(t)fi = 0; f2 + M(t)f 2 = 0

whence f,"/fl = f2"/f2 and, therefore, f,"f, - f2-f1 = 0, that is,

fl'f2 - f2'f = h = constant [118.13]

The value of h is

h = fl'(0)f20) -f2'(O)f 1(O) = f1'(27r)f2(27r) - f2'(27r)f(27r) [118.14]

which, by [118.10] and [118.11], becomes

1 = ad - bc [118.151

From Equations [118.9] and [118.12] in view of the initial conditions [118.11]

one gets

Al(a - a) + A 2c = 0
[118.16]

Alb + A 2 (d - a)= 0

Thus, in view of [118.15], the condition for the non-trivial solution of the

system [118.16] is

a2 - (a + d)a + (ad - bc) = 2 - (a + d)a + 1 = 0 [118.17]

The roots of the characteristic equation [118.17] are

a +d (a+ d)2  a +d (a + d)2
1,2  2 2 2 4 [18.8]

If we put a 2 = cos 2nr, this equation becomes

a1,2 = cos 2 _ru ± jsin 27r = e [118.19]

If a +d < 1, cos 27rp is real; hence, p is also real, and a is complex with2
modulus equal to one. This characterizes stability, both of equilibrium and

of the stationary motion, from the very definition of a, Equation [118.9].
a+d
2 > 1, p is imaginary; hence, a is real, and there is a root greater

a +d
than one which indicates instability. If a 1, = 0, and hence a = 1;

this should be considered as the beginning of the unstable range of the

Mathieu equation.
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Taking into account the values [118.11], one can write

cos 27r =1 (a1 [f'(2r) + f 2(27)] [118.20]
e- 2 2

119. STABLE AND UNSTABLE REGIONS OF THE MATHIEU EQUATION

Let f = cos 7t and q = - sin yt be a pair of fundamental solutions

in the interval 0 5 t 5 7r with initial conditions f(O) = 1, €(0) = 0,

f'(0) = 0, and 0'(0) = 1, and let

g(t) = C sin t + D cos 6t; h(t) = E sin 6t + Fcos 6t [119.1]

be a pair of fundamental solutions in the interval 7r 5 t _ 27r, where y =

W2+ a 2 and 6 = cw2 - 2 . Fitting these functions together at t = 7r, we

obtain
f(7) = g(lr) or cos yr = C sin 67r + D cos 67r

f'(r) = g'(r) or - y sin yr = C cosd6r - D6 sin 67r

1 [119.2]
(4) = h (r) or -sin y7 = Esin67r + F cos [119.2]

'(7r) = h'(r) or cos ylr = E6 cos d67r - F6 sin 67r

From these equations we can determine the four constants A, B, C,

and D and thus determine

cos27ru = f(27r) + 0'(27) _ g(27r) + h'(2) [119.3]
2 2

One finds that for w2 > a 2 > 0,

cos 27r/ = cos7ry cosn7r - + ! sinr sin7rS [119.4]

and for c 2 < a 2

cos 27r = cos7ry cosh7r7 - -1 7 77) sin ny sinh rri [119.5]

where 2 = a2 - 2.

From these equations one may plot curves in the (w2,a2 )-plane which

are the boundaries between the regions of unstable motion (shown in white in

Figure 119.1) and of stable motion (shown by shading). This discussion is

taken from an article by Van der Pol and Strutt (25). These authors discuss

the character of the stable and unstable regions for various values of the two

parameters a 2 and w2 and derive the following conclusions:

1. The unstable regions cover a.larger area than the stable ones.

2. Below the 45-degree line in the first quadrant the'motion is, in gen-

eral, stable. Here a2 < 0 2, the stepwise "ripple" appearing in Figure 119.1
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-4 3 2 -I 0 / 2 3 4 5 6 7 8

Figure 119.1

does not touch the zero line, and the coefficient of x in the Mathieu equa-
tion remains positive. Thus, without the ripple, one would always have stable

motion. Under certain conditions the ripple renders the motion unstable.
3. Above and to the left of-the 45-degree line the motion is generally

unstable; the stable areas which exist are relatively small. Without the

ripple the motion is unstable in this region so that the ripple under certain

conditions transforms the instability into stability.

The last conclusion is illustrated experimentally by a reversed pen-

dulum whose support undergoes a periodic vertical motion. It is found that,

for a certain band of frequencies and for a certain amplitude of the motion

of the support in the vertical direction, the unstable pendulum exhibits

stability.

In what follows we shall be interested particularly in the unstable

solutions of differential equations with periodic coefficients and will extend

the discussion a little further to ascertain whether self-excitation will ex-

ist under various conditions of frequency and phase of the ripple relative to

the fundamental oscillation of the system.

Instead of following the analytical argument of Van der Pol and

Strutt, we will investigate the behavior of the phase trajectories, which will

enable us to gain a more intuitive understanding of the phenomenon of hetero-

parametric excitation.
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120. PHYSICAL NATURE OF SOLUTIONS

From the preceding analysis it follows that in certain regions of

the (w2, 2)-plane the solutions of the Mathieu-Hill equation are unstable.

These regions of instability have not as yet been explored to any extent be-

cause the aim of previous analytical studies has been the establishment.. of

conditions of stability which resulted in the Mathieu functions, with which

we are not concerned here. On the contrary, for parametric self-excitation,

in which we are interested here, the unstable regions present greater inter-

est. Although by introducing the Mathieu-Hill equation we lose the familiar

ground of the theory of Poincare, that is, it is impossible to eliminate time

between the two differential equations of the first order, the procedure is

more direct, as will be shown. The main limitation of this method, as was

already mentioned, is the fact that since the Mathieu-Hill equation is lin-

ear, there is no indication whatever as to how the gradually increasing os-

cillations of the unstable region reach a steady state. To determine this it

would be necessary to investigate a non-linear equation of the Mathieu-Hill

type, but, as we pointed out, no theory of such equations exists at present.

Since we are unable to proceed analytically with a non-linear Mathieu-Hill

equation, it is still possible to form a certain physical idea as to what

happens in the unstable region of solutions of this equation by the follow-

ing argument of Mandelstam.

Assume that we have a non-dissipative oscillating circuit with a

capacity which varies periodically between the two limits Cmax and Cmi,. Let

the capacitor have initially, that is, when t = 0, a certain charge q; the

circuit has no current. Since there is no essential difference between the

solutions of the Mathieu equation and those of the Hill equation with the

function

M(t) = 2 + 4 a2(cost - cos3t + - [120.1]
7T 3 5

representing a rectangular ripple, see Section 119, we can adopt the argument

of Van der Pol and Strutt and consider abrupt variations of capacity from

Cmax to Cmin, and vice versa, occurring periodically.

Assume, therefore, that for t = 0 the capacity is suddenly decreased

by AC= Cmax - Cmin. Since the whole energy stored in the circuit is purely

electrostatic, it is apparent that the impulsive work done during this sudden

decrease of capacity is

AC 2

S2C2 q [120.2]

This amount of energy is thus added to the initial weak electrostatic energy

existing in the capacitor prior to the instant t = 0. The capacitor will then

begin to discharge through the circuit and a current will appear. Assume now
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that one-quarter period later, when the capacitor is totally discharged and

the energy is entirely electromagnetic (Li2/2), we restore abruptly the orig-

inal value of the capacity Cmax by giving the increment +AC to the capacity.

In so doing no work will be performed since the electrostatic energy is zero

at this instant. However, from the fact that during the preceding operation

the electrostatic and, hence, the total energy of the system has received an

increment2C2 q2, it is apparent that it is still present in the system which

has been assumed to be conservative. If one-quarter period later we repeat

the procedure made at t = 0, that is, reduce the capacity by the amount AC,

another increment of the electrostatic energy will be added, and so on for

subsequent abrupt changes AC of capacity occurring periodically every quarter

period of the circuit. It is thus seen that energy is injected into the sys-

tem periodically at the instants t = 2nW, n being an integer, when the capac-

ity is suddenly changed by the amount - AC; the restoration of the capacity

(+ AC) to its maximum value occurs at the instants t = (2n + 1)1 without in-

volving any work. It is observed that the period of variation of the capac-

ity is one-half the period of the free oscillatory phenomenon.

The argument remains the same if, instead of capacity variations,

inductance variations t AL are used. The timing of the ripple for inductance

variations is exactly the same as for capacity variations, namely, the coeffi-

cient of the inductance is-decreased (- AL) at the instants 0, T/2, .*. , and

increased (+ AL) at the instants T/4, 3T/4, ... . To the same timing, how-

ever, there will correspond a diametrically opposite effect, that is, at the

instants T/4; 3T/4, ... , when L is increased, there will be an addition of

energy since the whole energy is electromagnetic at these instants; whereas

at 0, T/2, ... , when L is decreased, no work will be done since the electro-

magnetic energy is zero.

121. TOPOLOGY OF THE HILL-MEISSNER EQUATION

The Hill equation with the rectangular ripple expressed by Equation

[120.1] was used by Melssner in his analysis of vibrations arising in driving

rods of electric locomotives (26) and was found useful by other investigators

(25). Very frequently this particular form of Hill's equation is designated

as the Hill-Meissner equation; we will inquire further into the nature of its

solutions. The usefulness of the Hill-Meissner equation lies in the particu-

lar form of its periodic coefficient, the ripple, which permits a simple dis-

cussion of its trajectories in the phase plane. It is apparent that the a

trajectories of the Hill-Meissner equation differ somewhat from those of the '

Mathieu equation, but it is likely that, at least qualitatively, there is not

much difference between the shapes of integral curves for both equations, as

was pointed out by Strutt (27) and as follows from experimental evidence. It
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is to be understood, however, that no direct quantitative comparison of the

unstable solutions of equations of both types has been attempted so far, and

the above assumption seems to be a plausible hypothesis convenient for a qual-

itative analysis of the phenomenon.

With these remarks in mind, we shall write the Hill-Meissner equa-

tion in the form

i + (a2 + b2 )x = 0 [121.11

which means that we consider alternately the two equations

x + (a2 + b2)x = 0; x + (a2 - b2)x = 0 [121.2]

during each half period r of the ripple, with the understanding that the solu-

tions have to be continuous on physical grounds although not necessarily ana-

lytic at the points at which the changes from (a
2 + b2 ) to (a2 - b2), or vice

versa, occur. We will assume that a2 > b2 inasmuch as we will be concerned

with the problem of modulation of the Quantity a
2 by a rectangular ripple b2.

We will now elaborate somewhat the example of heteroparametric ex-

citation discussed in the preceding section and write the differential equa-

tion of the non-dissipative circuit in the form

L + -q = 0 [121.3]
0 dt2  C

where Lo is the inductance, C is the capacity, and q is the quantity of elec-

tricity stored in the capacitor. Let us assume that the capacity C varies

between Cmax = Co + AC and Cmin = Co - AC in a stepwise manner. The preceding

equation can then be written as

q 1 ± q = 0 [121.4]
LC(1 + C)

where y, = AC/Co is the index of the stepwise modulation. If 1/LoCo = w 0
2 and

if we assume that y, << 1, without any loss of generality Equation [121.4]

becomes

q + (1 T 7c2)wq = 0 [121.51

This equation, as was just explained, should be considered as an alternate

sequence of the two equations

( + (1 + )w2q = 0; ± (1- y,)Woq = 0 [121.6]

A trivial change of the independent variable t = T/ 0o transforms these equa-

tions into the form

d2q+ q = 0; dq + q = 0 [121 .7]
d72 d2 2

where a,2 = 1 + y7 and a 22 = 1 - y,. The two equations replace each other at

the "frequency" of the ripple ± AC.

0 I 1 1 1 1 in f lh i
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Since no confusion is to be feared,

dT we shall designate by q and q the derivatives

0 with respect to the new variable 7, the angu-

lar time.

Let us transfer the problem into

b the phase plane of the variables q and '.

0 A q The solutions q(r) will then be represented

by the integral curves, or phase trajecto-

ries, of Equations [121.7], and the dynamical

process described by these equations will be

represented by the motion of the representa-

tive point on these trajectories; see Part I.

Figure 121.1 For Ye = 0 and a 2 = a22 = 1, the

trajectories of Equations [121.7] form a con-

tinuous family F, of concentric circles with the origin as center. If ye * 0,
the trajectories form continuous families I, and F' of concentric homothetic

ellipses shown in Figure 121.1. The family F1 corresponding to a > 1 has a

constant ratio b/a = a,2 = 1 + y, of semiaxes; the family F2 has a ratio

b'/a = a 2
2 = 1 - y,. The family ,F corresponds to the reduced value C. - AC

of the capacity and Fz to the increased value Co + AC. The origin 0 is the

singular point of Equations [121.7]. The two families F1 and F, thus serve

as a kind of reference system determining the motion in the phase plane. For

example, if for t = 0 certain initial conditions, say (qo,0), are given and the

value of C is prescribed, for example, C = C o - AC, the process is depicted by

the motion starting from the point A corresponding to the initial conditions

and moving along the ellipse of the family F1 passing through A. If at a later

instant t = t1 , corresponding to the point B on the ellipse, the capacity is

changed and is then C = Co + AC, the representative point will pass onto the

elliptic trajectory belonging to the family F2 passing through B and will

continue to move on that trajectory until the next change (C= Co - AC), and

so on.

This representation of the solutions q(r) of Equations [121.7] by

phase trajectories is a convenient way of ascertaining the various circum-

stances of heteroparametric self-excitation. As an example, let us consider

self-excitation when a capacity ripple, discussed in Section 120, is present.

Let us start from a point A(qo,0), see Figure 121.2, after the capacity has
been reduced (C = Co - AC). The representative point will move on the arc AB

of the elliptic trajectory of the family Fl. At the point B (q = 0, 4 = max)

the capacity is increased (C = Co + AC), and the arc BC of the family F2 is

followed. At the point C the capacity is reduced, and the next arc CD is of

- ' r-4 W -*AL a,44 . * 01
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the family FI , and so on. After a dq

period 2ff one reaches the point E dT

corresponding to q, > q0 which B

shows that the energy content of

the system has been increased.
C C E

It must be noted that A q

the phenomenon is reversible; in

fact, if we replace the words

"capacity is decreased" by "capac-

ity is increased," and vice versa,

in the argument of Section 120, it

is apparent that instead of adding D

energy by capacity variations, en-

ergy will be withdrawn by these Figure 121.2
variations. Physically this means

that, instead of injecting energy into the system by providing external impul-

sive work which will overcome the electrostatic forces, energy will be with-

drawn because the electrostatic forces will do the impulsive work and will

thus diminish the energy content of the system. This situation is shown by

the trajectory AB'C'*** in Figure 121.2. If, starting from the point A, as

before, the capacity is increased (+ AC), at B' decreased, at C' increased,

and so on, a convergent spiral will result which represents withdrawal of

energy.

In this example the trajectories arespirals made up of elliptic

arcs; these spirals have continuous tangents at every point, although there

are discontinuities in the curvature at the points B, C, D, E, ... , at which

the changes of capacity occur. In other words the trajectories of the Hill-

Meissner equation with which we are concerned here are piecewise analytic

curves, possessing continuous first derivatives but discontinuous second de-

rivatives at points where a loss of analyticity occurs. In a more general

case analyzed in the following section the piecewise analytic trajectories

may have discontinuous first derivatives at certain points.

122. DEPENDENCE OF HETEROPARAMETRIC EXCITATION ON FREQUENCY
AND PHASE OF THE PARAMETER VARIATION

In the preceding section we studied a special case in which the dis-

continuous changes in the rectangular ripple occurred at the instants when the

representative point crossed the coordinate axes of the (x,x)-plane and the

frequency of the ripple was twice that of the circuit. This case, which is

the one studied by the early investigators, is also the one most frequently

encountered in practice. We will now outline a more general method of approach
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dq to this problem by considering different

aB relative frequencies and phase angles of
'E

N/ %2 the ripple with respect to the oscillatory

Er process in the circuit.

2 For this purpose we shall extend

P somewhat the study of the preceding section.

o __ao The radius vector r of a phase trajectory

-a of the family F1, for example, is given by

the equation

Figure 122.1 r = ao [122.1]
2 1

COS20 + s2 Sin 0
a 1

where € is the angle of the radius vector; ao = OA, the semiaxis on the x-

axis; and a1
2 = 1 + y, as before. If the change of capacity occurs at some

point M, see Figure 122.1, whose coordinates are x, = rI cos ,1 and y, =
r, sin q,, where r, corresponds to the angle 0 1, the arc of the family F2 cor-

responding to C = CO + AC will begin at the point M and will continue to the

point N(r 2 ,O2) at which a change of capacity from Co + AC to Co - AC occurs

and a new arc NP of the family FI will be traversed. If we start from a given

point of the phase plane and assume a particular subdivision of angles 02 -"1,

0 3 - ,, "*" , it can be shown (28) that the subsequent major semiaxes al, a2 ,
... of the elliptic trajectories can be calculated by an elementary recur-

rence procedure. Thus, for' example, starting from the point A in Figure
122.1, one obtains after N changes of capacity the following expressions for
the major semiaxis aN:

f f3...f2, -
aN = a2  a0 1 3 2v -1 [122.2]

a a2 = f f4 f . . +

a N = +1 !Y 1 3 [122.3 ]
C+ 2 f2f4 .f2i

where

a 2 + tan20i
0 a+ tan20i [122.4]

From the properties of the functions fi (o) it is apparent that

I(4) = f(-,) = , + ) = (- + r) [122.5]

The only case of practical interest is that in which all intervals are equal

and are fractions of 2k7r, where k is an integer. We shall call the intervals

in this mode of subdivision the equiphase intervals inasmuch as the phase
plane is dividea into equal sectors. If N is the number of changes of capac-

ity in one period (27) of the process, the phase angles for N= 4 will be

~94r* L~k~l~~~rpr*~1 a~ .a~i~iLP -~aii O ~ ~s~~C4~ x *rL~blUi~-?l" 5ik~g~t4~~~~~t~l*i *-Ldri
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Figure 122.2

S1 2 0 and 4 = o. We may call 0o the
*o' *1 = *0 + 7r , . 00 + 2 * 03 = 04 + 2'

phase angle of the ripple and the number N the relative frequency of the rip-

ple. Figure 122.2 shows the relative position of the ripple, with N= 4 and

a certain arbitrary angle 0o, with respect to the free oscillation of the

system.

It is to be noted that in a more detailed investigation of this

phenomenon one has to take into account the fact that the equiphase intervals

are not equitime intervals, that is, intervals of equal time, because of the

non-uniformity of the motion of the representative point on the elliptic tra-

jectories. Although this circumstance can be taken into account by defining

certain functions g,(,i) similar to the functions fi(*i) just introduced, we

shall not elaborate on this subject here but will investigate the principal

features of heteroparametric excitation on the basis of the equiphase inter-

vals. There is sufficient justification for this because in the most impor-

tant practical cases, when the changes of capacity occur on the coordinate

axes of the phase diagram, both types of intervals coincide; when'they do

not, the introduction of equitime intervals, while complicating the calcula-

tions somewhat, does not change the qualitative aspect of the phenomenon of

heteroparametric excitation.

It is convenient to consider the following four groups of numbers N.

1. N = 4v; 2. N= (2v + 1)2; 3. N= 2v + 1; 4. N = p/q, where

v = 1, 2, 3, *'" , and p and q are relatively prime. In the first three

groups N is an integer, and in the last it is a rational fraction. This

covers all cases of practical interest.

1. First group: N= 4, 8, 12, .

Let us consider the first case, N= 4, which has previously been

studied by an elementary method. We shall now apply the general method in-

volving the use of the functions fi(*i). The intervals are clearly o0, i =

o + 2 = 0 + 3 =  o + 3, and *4 = o. By the properties [122.51
*0 2 *2 = * +7 * = *0 T7'

lkliil l I, , la , W - 1141114111111 W, = 14111I lll~ i I,
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of the functions fi(Oi) it is apparent that

BAfo = f2 = f4 ; fl = f3

whence, by Equation [122.2] we have 0
flf, f1

2

a4  0 a0 y [122.6]

It is evident that the condition for a heteropara-

C I D metric excitation is a4 > a,, that is,

2

Figure 122.3 = 1

If we substitute for f, and f2 their values from

Equation [122.4], it is easy to discuss the conditions for self-excitation of

the heteroparametric oscillations. We will omit these elementary calculations

and merely indicate the conclusions. The zones of the phase angle 00 in which

self-excitation occurs are located within the shaded sectors shown in Figure

122.3. In the non-shaded sectors, self-excitation does not occur. The lines

AC and BD form the critical phase angles o0 for which self-excitation appears

or disappears. The maximum increase of the amplitudes per cycle occurs for

€9 = 0 and o = 7 . For these values of o one has the relation
2Of 1+ Y

a4 a = a0  [122.7]
U 2  1-

2. Second group: N= 6, 10, 14, 18, ---

Consider, for instance, the case when N= 6. By Equation [122.2]

a6 = aof2f4f [122.8]

and, for the intervals in question, fo = f3 = f6, f, = f 4 , and f 2 = f5 , which

shows that a6 = ao for all values of ,. Hence, for this particular frequency

of the ripple, parametric excitation is impossible.

3. Third group: N= 3, 5, 7, 9, "-

Let us take the case N = 3. Since N is odd, we apply Equation

[122.3] and obtain

a 3  ao  f3
3 02 f2

From the form of the subdivisions and from Equation [122.51, f3 = f0 . Hence, *es

the condition for self-excitation will be

of, ff° 1 
[122.9]

ct2 f2
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By introducing for fo, fl, and f2 their values from Equations [122.4] and

carrying out the calculations, one finds that no self-excitation is possible

cr in this case.

4. Fourth group: N = p/q

One easily ascertains that as far as self-excitation is concerned

most fractions p/q are either of no interest or fall within the scope of the

groups previously investigated. The only cases in which heteroparametric ex-

citation occurs are those in which N= 4/3, 4/5, 4/7, ''' ; 8/3, 8/5,

corresponding to the intervals A4 = 3r/2, 57/2, 77r/2, ' , which fall into

the first group.

123. HETEROPARAMETRIC EXCITATION OF A DISSIPATIVE SYSTEM

If a system is dissipative, it is apparent that the injection of

energy communicated by the variation of a parameter must, on the average,

exceed the energy dissipated by the system. This, as we shall see, will lead

to an additional condition.

Let us consider the equation

1
Log + Roq + 1 q = 0 [123.11

of a dissipative electric circuit in which we assume that the capacity C is

modulated by a ripple + AC so that C = Co d AC.

If we divide by L o and put Ro/L o = 2po and

1 W2(1 )

L0C0(1 ±o1) 0
LoCo(1 + )

Equation [123.1] becomes

q + 2p0o + wo(1 T Y)q = 0 [123.2]

When the new variable Q defined by the equation

q = Qe - f podt [123.3]

is introduced, Equation [123.2] becomes

± + w12(1 T 6)Q = 0 [123.4]

Changing the independent variable from t to 7 = w1 t, one obtains

d2Q + (1 6)Q = 0 [123.5]

As mentioned previously, this equation is equivalent to the alter-

nate sequence of the following two equations replacing each other at each

discontinuous change of capacity:
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d2Q 2QdQd 2 + 2dr + Q = 0 [123.6]
dT 2 + 2Q 0; d 2 Q 2

where
2 2

2 =+2 0a 1+ 6 =1 + c; = 1 - 6 = 1- -O [123.7]
W 2' 2 C'Y 2123.7]

1 1

The plus sign in the first equation [123.7] corresponds to C = Co - AC. Equa-

tions [123.6] have the same form as Equations [121.7], so that the conclusions

reached for those equations are applicable here except that Equations [123.6]

contain the dependent variable Q whereas Equations [121.7] contain the vari-

able q; the two variables are related by Equation [123.3]. The trajectories

of Equations [123.6] are either convergent or divergent piecewise analytic

spirals formed by elliptic arcs, the closed trajectories, appearing as a

threshold between the two forms of spirals. For a closed trajectory Q is

bounded; hence, by [123.3] q decreases monotonically. This means that con-

vergent spirals in the (q,-d)-plane correspond to the closed trajectories in

the (Q, )-plane so that no self-excitation is possible. It is obvious that

in order to have parametric excitation, the amplitude q must increase mono-

tonically, or at least be constant, which requires that

Q = Qe+fdt [123.8]

where p, 
- po . This means that the trajectories in the (Q,)-plane must be

divergent spirals with the absolute value of the average negative decrement

IpI greater than, or at least equal to, the positive decrement po = Ro/2Lo
of the dissipative circuit (R0,L0,C). Physically this means precisely the
condition stated at the beginning of this section, namely, the energy injec-

tions into the circuit by the ripple AC must, on the average, be greater

than the energy dissipation.

On the other hand, since for a dissipative circuit with constant

parameters (Ro,Lo,Co) the decrement is po = Ro/2Lo, the ratio of the ampli-
tudes after one turn 2r in the phase plane is

=q e-2r [123.9]
qo

In the optimum case of parametric excitation (N= 4, 0o = 0), from Equation

[122.7] one has
2

q21r _ +P1
27r

qo at2

which defines the increment

2

p= 2og -2 [123.10]
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Expressing the condition for parametric excitation, namely, p, 2 po, and sub-

stituting for e 2 , a22, and po their values, one gets

_02 _ p eo o - 1
2Y W 2  e'o - 1 c' [123.11]

where go = 7rRo/Loo 0. Since a 2 and a22 are to be positive and a 1
2 > C 2

2 , one

obtains the other limit for ye. This gives

S 02 P 2

y 5 2 = Y [123.12]

From these expressions it follows that yc must be in the interval

S- "[123.13]

in order to obtain heteroparametric excitation. When R o = 0, we have po = 0

and po = 0 which gives the interval (0,1). This interval decreases when R o

increases and becomes zero when 02 - p0
2 = 2 = 0, that is, when R o =

2VL0 -7C. The last expression is the condition for critical damping. It is

therefore impossible to obtain parametric excitation of a critically damped,

or overdamped, circuit.

As was previously mentioned, heteroparametric excitation can be

obtained by a variable inductance, instead of a variable capacity. For a

non-dissipative circuit the conditions of heteroparametric excitation are

identical except for the phase of energy injections, as was mentioned at the

end of Section 120. This similarity in the effects resulting from the vari-

ation of capacity and inductance arises from the fact that both these factors

enter symmetrically into the expression w0
2 = 1/LoCo for the frequency.

For a dissipative circuit the situation is different in that the

capacity enters only into the expression for the damped frequency w,2 = o2

- p02 (through 002) and does not appear in the decrement po = Ro-/2Lo. The

inductance Lo appears both in the expressions for the frequency and for the

decrement. Hence, a priori, one may expect different results in both cases.

One can develop the theory of inductance modulation in exactly the

same manner in which we have outlined the effect of capacity modulation. The

only difference lies in the fact that for the inductance ripple instead of an

interval in which the index of modulation y must remain in order to obtain

self-excitation, the condition for self-excitation is given by an inequality.

It is also noteworthy that in the preceding discussions it was assumed that

y << 1, which enabled us to simplify the expressions by writing 1 + 1 - V.

By waiving this restriction, the calculations are considerably more compli-

cated but the qualitative picture of the phenomenon remains substantially the

same.

''In MIM11111 li l rk u
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124. HETEROPARAMETRIC MACHINE OF MANDELSTAM AND PAPALEXI

A differential equation with periodic coefficients of the form

L(t)YW + R(t) + C(t)x = 0 [124.1 ]

can be reduced to an equation of the Mathieu-Hill type. It follows that the

effect of a parametric excitation can be obtained by periodically varying one

of the parameters L, C, or R. The variation of the parameters L and C has

been studied sufficiently in preceding sections. As to the parameter R, it
must be noted that only those parametric variations which extend alternately

into the region of negative resistance are capable of producing parametric

excitation. We shall not go into this matter here, as it is clear that on
physical grounds negative resistance means the supply of energy from an out-
side source.

Mandelstam and Papalexi (22) developed an interesting generator of

electrical energy, which they called a "heteroparametric machine." The ar-

rangement consisted of a series of coils located on the periphery of a sta-

tionary disk; the inductance of these coils was varied by the periodic passage

of teeth and slots on a rotating disk parallel to the stationary disk. The
frequency of the inductance variation thus obtained was of the order of 2000
cycles per second.

In a circuit of this kind devoid of any source of energy other than
the kinetic energy of the wheel, electrical oscillations of exactly half the
frequency of the parameter variation were observed. For a linear system, cor-
responding to a linear Mathieu equation, the oscillations rapidly reached high
amplitudes of about 1500 volts which caused a puncture of the insulation;
later on, by adding a non-linear element in the circuit, the authors succeeded
in obtaining stable performance of the machine.

The factor of modulation during these tests was of the order of 40
per cent, and the power developed was about 4 kilowatts. The non-linearity by
which the oscillations were stabilized was obtained by means of a saturated-
core reactor; an auxiliary d-c winding served the purpose of displacing the
stable point on the characteristic and of adjusting the stable voltage to a
desired value.

Similar experiments were produced with a periodically varying capac-
ity. The variable capacitor consisted of 25 aluminum disks with peripheral

holes rotating between a corresponding number of similar stationary disks.

The variable capacitor inthese tests was shunted by a constant oil capacitor.
The non-linearity necessary for the stabilization of oscillations was obtained
by neon tubes which permitted maintaining the voltage at about 600 to 700
volts. Without the neon tubes the phenomenon is governed by a linear Mathieu
equation, and the voltage rises rapidly to between 2000 and 3000 volts and the
insulation is punctured. If one changes the parameters of the oscillating
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circuit so as to deviate from the condition of exact fractional-order reso-

nance, the amplitudes of the parametrically excited oscillations decrease, all

other conditions being equal, until finally the excitation suddenly disappears

at a certain critical threshold as was analyzed theoretically in Section 123.

125. SUBHARMONIC RESONANCE ON THE BASIS OF THE MATHIEU-HILL EQUATION

In order to complete the study of heteroparametric excitation, we

shall now show that the differential equation [102.2] of subharmonic external

resonance which we have discussed in Chapter XVII on the basis of the theory

of Poincar6 can be reduced to an equation of the Mathieu-Hill type. For that

purpose, instead of following the method of Poincare by introducing small per-

turbations a and f, Equation [103.9], in the value of the parameters u and v,

we shall now introduce a small perturbation p in the value of the periodic

solution x0(T) of Equation [102.2] since we know that it possesses periodic

solutions. Putting

x = Xo(7) + p [125.1]

and substituting it into Equation [102.2], we get, after expanding f(x,i) in a

Taylor series,

o + xo + p + p = pf(o,xo) + Xosinnr + ppfxo(x0, 0) + pfo(x0,90o) [125.21

Since x0 satisfies Equation [102.2], we obtain

p + p = Ppfxo(XO, O) + jpfo(X 0, o) [125.3]

where f;o (xo0, o) and fo (xo , o) are known functions of xo and o and, hence,

known periodic functions of time. Equation (125.3] is therefore an equation

with periodic coefficients. If we use the substitution [118.2] which in this

case is

V fi o( Oi)dr
p = ze2 [125.4]

Equation [125.3] becomes
W+ 1 -f - 2 (f) 2 z = 0 [125.51

Since the quantity in brackets is a periodic function of time, this equation

is of the Mathieu-Hill type whose general solution is

z = ePkl'T(r) + eak2 2(r) [125.6]

where 01 and 02 are periodic with period 27 and k, and k2 are the character-

istic exponents of the general theory. The question of the stability of the

motion can be discussed by the method indicated in Sections 118 and 119 if

one knows, the explicit form of the function f(xo o).

-- -- I I , Im m W -, , 1, 1 1 1111,
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126. AUTOPARAMETRIC EXCITATION

Throughout this chapter we have been concerned with heteroparametric

excitation because in a great majority of practical cases self-excitation as

well as the steady state of non-linear oscillations can be discussed more con-
veniently on the basis of the theory of Poincare than by treating it as auto-

parametric excitation.

In some special problems, however, the concept of

o autoparametric excitation of oscillations may be conven-

ient. In this section we propose to apply this method to

an interesting problem of an elastic pendulum investigated

by Gorelik and Witt (29). These authors investigated the

motion of a physical pendulum suspended on a spring and

capable of oscillating in a plane, as shown in Figure 126.1.

Let m be the mass of the bob, 10 the length of the pendulum

in the absence of the dynamical load, r its length under

load, k the spring constant, and g the acceleration of

gravity. Obviously the system possesses two degrees of
freedom, namely, the angle 0 of the pendulum and the elon-

Figure 126.1 gation z of the spring.

In order to investigate the condition for auto-
parametric excitation, we write the Lagrangian equations of motion for both
degrees of freedom. The kinetic energy of the pendulum is

T = ( 2 + r 2 2 ) [126.1]
2

and its potential energy is

V k mgr(1 -2) [126.2]
2 )2o) -

where 1 -2 cos €. The first term of V corresponds to the elasticity of

the suspension and the second to gravity. If we introduce a new constant

1= r + [126.3]

and a new variable

r- 1z = [126.4]

Expressions [126.1] and [126.2] become

T = m (2 + + 2z2) [126.51

m l  -2  k g €2 +2g 2)  [126.6]
2 1m 1
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where z and 0 are assumed to be small of the first order and we retain terms

up to and including those of the third order.

The Lagrangian equations are

Z +± z+ 2 O
m 21

[126.7]

+ + (-zo + 2i + 2z) =

It is seen that, if the terms in the parentheses of these equations are zero,

the first equation will represent a simple harmonic oscillation in the z de-

gree of freedom with frequency w, = Yk/m, and the second equation will give a

similar oscillation in the € degree of freedom with frequency wo = -/.

These terms represent a non-linear coupling between the two degrees of free-

dom; we will now investigate this condition.

It is to be noted that in the general case when wz * the non-

linear coupling does not contribute anything of particular interest.

An interesting case arises when w~ = 2w0. Assume that the spring

has been stretched and released at t = 0 so that 0 = 0 initially. The initial

motion will, therefore, be

z = zo Cos Wt [126.8]

Substituting this value of z into the second equation [126.7] and regrouping

the terms, one has

(1 + 2zocosw t)¢ - (2w sinw t)¢ + w' (1 + zocosWt) = 0 [126.9]

which is a differential equation with periodic coefficients and can be reduced

to the form of the Mathieu equation. Since wz = 2wo, it is observed that the

periodic variation of the coefficients occurs at twice the frequency of the

oscillation in the 0 degree of freedom. If the parameters of the Mathieu

equation to which Equation [126.9] can be reduced are such as to correspond to

the unstable region, the oscillation in the 0 degree of freedom will gradually

build up.

This curious phenomenon of autoparametric self-excitation was actu-

ally observed by Gorelik and Witt. However, in view of the fact that this

system is conservative, it is apparent that the building-up of the oscilla-

tion in the 0 degree of freedom implies a decrease of the original oscillation

[126.8] in the z degree of freedom. In this manner the occurrence of the ini-

tial oscillation in the z degree of freedom is transferred into the 0 degree

of freedom through the instrumentality of the autoparametric non-linear coup-

ling between both degrees of freedom.
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One could, of course, start from the 0 degree of freedom by releas-

ing the pendulum from an angle 0 = 0 for t = 0 which would give the oscilla-

tion

S= 0cos Wt [126.10]

Substituting this expression into the first equation [126.7], one has

i + = 4 (1 - 3cos2wt) [126.11]

This is the equation of a simple harmonic oscillator with frequency o acted

on by a periodic external excitation with frequency 2w, = w.. Hence, in the

z degree of freedom there will be ordinary linear resonance by which the z-

oscillation will gradually increase while the 0-oscillation will gradually

decay, since the system is conservative.

It is to be noted that in both cases the phenomenon manifests it-

self in the fact that the energy appearing initially in one degree of freedom

is eventually transferred into the other degree of freedom. There exists,

however, an asymmetry in the phenomenon depending on whether one starts with

the oscillation [126.8] or [126.10]. If the initial oscillation is [126.8],

the excitation of the oscillation in the 0 degree of freedom occurs through

the instrumentality of the unstable solution of the Mathieu equation, whereas

if the initial oscillation is [126.10], the autoparametric excitation mani-

fests itself in classical linear resonance with which the z-oscillation builds

up. This difference, however, is incidental to the particular scheme employed

and is of no further importance insofar as in the second case the autopara-

metric excitation is still present in the form of the centrifugal force whose

frequency is twice the frequency of the oscillation in the 0 degree of freedom.

It is noteworthy that in both cases the frequency with which the pa-

rameter varies is double that with which the self-excited oscillation occurs.

If one starts the oscillation in the z degree of freedom this is apparent be-

cause oz = 20~. If, however, one starts the oscillation in the q degree of

freedom, it is noted that the variation of the z-parameter takes place under

the effect of the centrifugal force so that in both cases the condition of

autoparametric excitation is fulfilled and the "pumping" of energy from one

degree of freedom into the other is reciprocal.

Another interesting experiment similar to that of Melde was made

recently by Sekerska (22), who passed an alternating current of 50-cycle fre-

quency through a stretched metallic wire capable of oscillating laterally

with a frequency of 50 cycles. It is observed that if the wire is initially

at rest the passage of alternating current eventually builds up the lateral

vibration of the string. The explanation of this phenomenon is that the ther-
mal effect of a current of 50-cycle frequency occurs at a frequency of 100

,l I ll W ill l l II
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cycles which causes a periodic variation of the parameter, the coefficient of

elasticity, at that frequency, and this, through the instrumentality of the

autoparametric excitation, produces self-excitation of lateral oscillations

with half the frequency of the parameter variation.

These phenomena occur not only for the ratio ,/ow = 2/1, where w,

is the frequency at which a parameter varies and w is the frequency of self-

excited autoparametric oscillation, but also for the ratios 2/2, 2/3, ...

Migulin (30) investigated, both theoretically and experimentally, these phe-

nomena when this ratio has the value 2/3 and found that the resonance curves

then resemble those obtained by Mandelstam and Papalexi, Chapter XVII, in

their studies of subharmonic resonance of the nth order. As a matter of fact,

the phenomena of subharmonic resonance and those of autoparametric excitation

are closely related to each other and merely represent different aspects of

the same physical phenomenon.

II WIVIII 111 Uk" III, WIN MI
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